Artifact 707fb21cfb8a7923ceb3fed5bb8104c7cc931880b1accb1e868ff286ee496721:
- Executable file
r38/packages/crack/crorder.red
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 6686) [annotate] [blame] [check-ins using] [more...]
%******************************************************************** module crackorder$ %******************************************************************** % % Name: crorder.red % Description: Multiple orderings support % Author: Arrigo % % $Id: crorder.red,v 1.21 1998/06/08 14:38:18 arrigo Exp $ % % !FIXME! codep is better substituted by getd as codep works only with % compiled code, oops. % % !FIXME! apply is going to be used as follows: % apply(caddr(getv(orderings_,[ordering_number])), {eq}); % to get the ordering function. % % make_orderings(fcts, vars) creates a vector containing all % possibile orderings of the given fcts and vars % symbolic procedure make_orderings(fcts, vars)$ begin scalar fctsl, varsl, ordsl, fn, j$ if print_ and tr_orderings then << terpri()$ write "make_orderings("$ write fcts, ",", vars$ write ")" >>$ if not pairp(vars) or not vars then << % Thomas has some situations in which there are no % variables but only functions, we accordingly create % a single ordering ordsl := mkvect(1)$ putv(ordsl,0,list(list(nil),fcts,'default_ordering_function))$ return ordsl$ >>$ if not pairp(fcts) then << terpri()$ write "confused! expected list of functions"$ % !FIXME! Same as above return(nil) >>$ % % OK, so we now actually create two lists and then turn them into % our "ordering" structure which is a vector % [ (perm v, perm f, ordering_function) % ... % (perm v, perm f, ordering_function) nil ] % % Purpose of the various bits is: % % v ordered variables list % f ordered functions list % ordering_function a function which, given a list of % derivs will order them for the current % ordering % % !FIXME! Do we want the trailing nil? % if simple_orderings then << ordsl := mkvect(1)$ putv(ordsl,0,list(vars,fcts,'default_ordering_function))$ >> else << varsl := permu(vars)$ fctsl := permu(fcts)$ ordsl := mkvect(length(varsl)*length(fctsl))$ j := 0$ for each v in varsl do for each fn in fctsl do << putv(ordsl,j,list(v, fn, 'default_ordering_function))$ j := add1 j$ >>$ >>$ % Done if tr_orderings then << terpri()$ write "END - make_orderings(): "$ terpri()$ write ordsl$ >>$ return ordsl$ end$ % % permu() is TW's list of permutations generator % symbolic procedure permu(li)$ % generates a list of permutations of the elements of li if length(li)=1 then list(li) else for each x in li join for each y in permu(delete(x,li)) collect cons(x,y)$ % % default_ordering_function(p,i) is the default function which is placed % in each of the entries of the orderings_ vector and acts as a % default unless the user decides to place something different. This % allows us to have all the standard orderings and to support % user-defined ones via different ordering_functions. % % p - list of derivatives to be sorted in the format used by % the decoupling routines, i.e. ( (f_1 . power) % (f_2 . power) (f_3 . power) ), % i - ordering w.r.t. which we want to work % symbolic procedure default_ordering_function(p,i)$ begin scalar ordered_p, fl_from_order, vl_from_order$ if print_ and tr_orderings then << terpri()$ write "default_ordering_function("$ write p,",",i$ write ")" >>$ vl_from_order := car(getv(orderings_,i))$ fl_from_order := cadr(getv(orderings_,i))$ if tr_orderings then << terpri()$ write "variables list from ordering ",i," is :", vl_from_order$ terpri()$ write "functions list from ordering ",i," is :", fl_from_order >>$ % % This one-liner should do the trick % ordered_p := sort_derivs(p, fl_from_order, vl_from_order); if tr_orderings then << terpri()$ write "ordered: ",ordered_p >>$ return ordered_p$ end$ % % orderings_prop_list_all() returns a list of all orderings in the % format which we use for the property list of each equation, i.e. % % ( \omega_1 \omega_2 ... \omega_n ) % % where each \omega_i is the index in the orderings_ vector % symbolic procedure orderings_prop_list_all()$ begin scalar i, l$ if print_ and tr_orderings then << terpri()$ write "orderings_prop_list_all()"$ >>$ for i:=0:sub1 upbv(orderings_) do << l := append(l,list(i))$ >>$ if tr_orderings then << terpri()$ write "list: ", l$ >>$ return l$ end$ % % orderings_add_function(f) adds the given function to all the % orderings, it is assumed that this is a new function appearing from % an integration. % In theory we should add the function to all orderings somewhere and % then add n! orderings with all the possible combinations (n is the % length of the orderings vector). This is rather unfortunate. % % !FIXME! What we do at the moment is add it at the end of each % function list. % symbolic procedure orderings_add_function(f)$ begin scalar i, vl, fl, ofn$ if print_ and tr_orderings then << terpri()$ write "orderings_add_function(",f,")"$ >>$ for i:=0:sub1 upbv(orderings_) do << vl := car(getv(orderings_,i))$ fl := cadr(getv(orderings_,i))$ ofn := cddr(getv(orderings_,i))$ putv(orderings_,i,append(list(vl,append(fl,list(f))),ofn))$ >>$ if tr_orderings then << terpri()$ write "new orderings vector:"$ terpri()$ write orderings_$ >>$ end$ % % orderings_delete_function(f) is symmetric to add_function() but of % course the problem here would be to find out which orderings have % become a duplicate (if any). % !FIXME! Example of a problem: assume we have the following fn % situation within a couple of orderings % % (f g h) % (g f h) % % Now, orderings_delete_function(f) will give us % % (g h) % (g h) % % Oops! % symbolic procedure orderings_delete_function(f)$ begin scalar i, vl, fl, ofn$ if print_ and tr_orderings then << terpri()$ write "orderings_delete_function(",f,")"$ >>$ for i:=0:sub1 upbv(orderings_) do << vl := car(getv(orderings_,i))$ fl := cadr(getv(orderings_,i))$ ofn := cddr(getv(orderings_,i))$ putv(orderings_,i,append(list(vl,delete(f,fl)),ofn))$ >>$ if tr_orderings then << terpri()$ write "new orderings vector:"$ terpri()$ write orderings_$ >>$ end$ % % End of module % endmodule$ end$