Artifact 41fe90c19029e0bbf0fd1dd2e11c33d600112e16fe9a02cb4bec119aed17b1f8:
- File
r34.1/xlog/rounded.log
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 2777) [annotate] [blame] [check-ins using] [more...]
Sat May 30 16:09:14 PDT 1992 REDUCE 3.4.1, 15-Jul-92 ... 1: 1: 2: 2: 3: 3: Time: 0 ms 4: 4: % Tests in the exact mode. x := 1/2; 1 X := --- 2 y := x + 0.7; 6 Y := --- 5 % Tests in approximate mode. on rounded; y; 1.2 % as expected not converted to approximate form. z := y+1.2; Z := 2.4 z/3; 0.8 % Let's raise this to a high power. ws^24; 0.00472236648287 % Now a high exponent value. % 10.2^821; % Elementary function evaluation. cos(pi); - 1 symbolic ws; (!*SQ ((!:RD!: . -1.0) . 1) T) z := sin(pi); Z := 0 symbolic ws; 0 % Handling very small quantities. % With normal defaults, underflows are converted to 0. exp(-100000.1**2); 0 % However, if you really want that small number, roundbf can be used. on roundbf; exp(-100000.1**2); 1.18440746497E-4342953505 off roundbf; % Now let us evaluate pi. pi; 3.14159265359 % Let us try a higher precision. precision 50; 12 pi; 3.141 59265 35897 93238 46264 33832 79502 88419 71693 99375 1 % Now find the cosine of pi/6. cos(ws/6); 0.866 02540 37844 38646 76372 31707 52936 18347 14026 26905 19 % This should be the sqrt(3)/2. ws**2; 0.75 %Here are some well known examples which show the power of this system. precision 10; 50 % This should give the usual default again. let xx=e**(pi*sqrt(163)); let yy=1-2*cos((6*log(2)+log(10005))/sqrt(163)); % First notice that xx looks like an integer. xx; 2.625374126E+17 % and that yy looks like zero. yy; 0 % but of course it's an illusion. precision 50; 10 xx; 26253 74126 40768 743.9 99999 99999 92500 72597 19818 56888 8 yy; - 1.281 52565 59456 09277 51597 49532 17051 34 E -16 %now let's look at an unusual way of finding an old friend; precision 50; 50 procedure agm; <<a := 1$ b := 1/sqrt 2$ u:= 1/4$ x := 1$ pn := 4$ repeat <<p := pn; y := a; a := (a+b)/2; b := sqrt(y*b); % Arith-geom mean. u := u-x*(a-y)**2; x := 2*x; pn := a**2/u; write "pn=",pn>> until pn>=p; p>>; AGM let ag=agm(); ag; pn=3.187 67264 27121 08627 20192 99705 25369 23265 10535 71859 4 pn=3.141 68029 32976 53293 91807 04245 60009 38279 57194 38815 4 pn=3.141 59265 38954 46496 00291 47588 18043 48610 88792 37261 3 pn=3.141 59265 35897 93238 46636 06027 06631 32175 77024 11342 4 pn=3.141 59265 35897 93238 46264 33832 79502 88419 71699 49164 7 pn=3.141 59265 35897 93238 46264 33832 79502 88419 71693 99375 1 pn=3.141 59265 35897 93238 46264 33832 79502 88419 71693 99375 1 3.141 59265 35897 93238 46264 33832 79502 88419 71693 99375 1 % The limit is obviously. pi; 3.141 59265 35897 93238 46264 33832 79502 88419 71693 99375 1 end; 5: 5: Time: 1904 ms 6: 6: Quitting Sat May 30 16:09:16 PDT 1992