Artifact 3fde7dbdf86022b99dd7f81f4f4840958db95ac83500bc14688155a751770cad:
- File
r34.1/plot/gnuplot.tst
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 1922) [annotate] [blame] [check-ins using] [more...]
% Some test examples calling GNUPLOT from REDUCE. plot(x**2); % with pole plot(cos x / x); % title (once title, title forever in this session) plot(y=x**2,x=(1 .. 4),y=(0 .. 4),title="hugo"); % polar coordinates plot(x**2,polar); % 3 dim plot(z=x**2+y,x=(1 .. 2),y=(3 .. 4)); % 3 dim parametric plot(x=u**2,y=v+1,z=u*v); % 2 dim parametric plot(x=t*sin(5*t),y=t*cos(5*t),t=(0 .. 10)); % 3 dim with contour plot(x*y,contour); % 3 dim, with range plot(sin x * cos y,x=(-2 .. 2),y=(-2 .. 2)); plot(sin(x**2+y**2),x=(-1.5 .. 1.5),y=(-1.5 .. 1.5),contour); plot((sin x + sin y)/(x**2 + y**2),x=(-0.1 .. 0.1), y=(-0.1 .. 0.1)); plot(x=u, y=v*cos (-u), z=v* sin(-u), u=(0 .. 3), v =(-0.1 .. 0.1), samples = 50); % high degree polynomial plot((x-1)**10); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % several curves in one diagram (family) plot(family(x,x**2,x**3,x**4,x**5,x**6,x**7, x**8,x**9,x**10),x=(0 .. 1)); % Legendre polynomials 0 .. 5 lb := {1, X, (4*X**2 - 1)/2, (X*(12*X**2 - 5))/3, (192*X**4 - 116*X**2 + 9)/24, (X*(960*X**4 - 772*X**2 + 125))/60}$ plot(family lb,x=(-1 .. 1)); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Fourier basis tb := for i:=-3:3 collect if i>0 then sin(i*pi*x) else cos(-i*pi*x)$ plot(family tb,x=(0 .. 1 )); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % plotting a curve given by a set of points: % simple approximation of y' = f(x,y) with Euler's method: on rounded; f := y * x; yy := 1; % starting point dx := 0.05; % step width points := for xx := 0 step dx until 1 collect {xx,<<aux := yy; yy:=yy + dx * sub(y=yy,x=xx,f); aux>>}; plot(points,x=(0 .. 1)); % for comparison the true algebraic solution (to be computed % by the odesolve packate): plot(e**(x**2/2),x=(0 .. 1)); end;