Artifact 3d5e5af86c78962743c9e4b7f92362ca63f16d0b3bf07226ddca3cf22eff61d3:
- Executable file
r37/doc/manual2/residue.tex
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 1616) [annotate] [blame] [check-ins using] [more...]
- Executable file
r38/doc/manual2/residue.tex
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 1616) [annotate] [blame] [check-ins using]
\chapter{RESIDUE: A residue package} \label{RESIDUE} \typeout{{RESIDUE: A residue package}} {\footnotesize \begin{center} Wolfram Koepf\\ Konrad--Zuse--Zentrum f\"ur Informationstechnik Berlin \\ Takustra\"se 7 \\ D--14195 Berlin--Dahlem, Germany \\[0.05in] e--mail: Koepf@zib.de \end{center} } \ttindex{RESIDUE} \def\Res{\mathop{\rm Res}\limits} \newcommand{\C}{{\rm {\mbox{C{\llap{{\vrule height1.52ex}\kern.4em}}}}}} This package supports the calculation of residues. The residue $\Res_{z=a} f(z)$ of a function $f(z)$ at the point $a\in\C$ is defined as \[ \Res_{z=a} f(z)= \frac{1}{2 \pi i}\oint f(z)\,dz \;, \] with integration along a closed curve around $z=a$ with winding number 1. It contains two \REDUCE\ operators: \begin{itemize} \item {\tt residue(f,z,a)}\ttindex{residue} determines the residue of $f$ at the point $z=a$ if $f$ is meromorphic at $z=a$. The calculation of residues at essential singularities of $f$ is not supported. \item {\tt poleorder(f,z,a)}\ttindex{poleorder} determines the pole order of $f$ at the point $z=a$ if $f$ is meromorphic at $z=a$. \end{itemize} Note that both functions use the {\tt TAYLOR} package (chapter~\ref{TAYLOR}). \begin{verbatim} load_package residue; residue(x/(x^2-2),x,sqrt(2)); 1 --- 2 poleorder(x/(x^2-2),x,sqrt(2)); 1 residue(sin(x)/(x^2-2),x,sqrt(2)); sqrt(2)*sin(sqrt(2)) ---------------------- 4 poleorder(sin(x)/(x^2-2),x,sqrt(2)); 1 residue((x^n-y^n)/(x-y)^2,x,y); n y *n ------ y poleorder((x^n-y^n)/(x-y)^2,x,y); 1 \end{verbatim}