Artifact 3011e35af696219451b265fd08be7646f4e3436d1b2cca276193f66c8a022d10:
- Executable file
r37/patches/patches.rlg
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 13209) [annotate] [blame] [check-ins using] [more...]
Tue Mar 6 13:52:20 PST 2001 Loading image file :/home/hearn/reddist/reduce3.7/lisp/psl/linux/red/reduce.img REDUCE 3.7, 15-Apr-1999, patched to 6-Mar-2001 ... 1: 2: 2: 2: 2: 2: 2: 2: 3: 3: % This file tests some of the patches included in the patches.red file. % If the latter file has been correctly installed, none of these should % give an error. % 7 Aug 99. % This did not terminate. df(tan((sqrt(1-x^2)*asin acos x + 2*sqrt(1-x^2)*x)/x),x); 4 ( - acos(x) *asin(acos(x)) 2 2 sqrt( - x + 1)*asin(acos(x)) + 2*sqrt( - x + 1)*x 2 *tan(-----------------------------------------------------) x 4 - acos(x) *asin(acos(x)) 2 2 4 sqrt( - x + 1)*asin(acos(x)) + 2*sqrt( - x + 1)*x 2 3 - 2*acos(x) *tan(-----------------------------------------------------) *x x 4 3 2 - 2*acos(x) *x + 2*acos(x) *asin(acos(x)) 2 2 sqrt( - x + 1)*asin(acos(x)) + 2*sqrt( - x + 1)*x 2 *tan(-----------------------------------------------------) x 2 2 2 2 + 2*acos(x) *asin(acos(x)) + sqrt( - x + 1)*sqrt( - acos(x) + 1)*acos(x) 2 2 sqrt( - x + 1)*asin(acos(x)) + 2*sqrt( - x + 1)*x 2 *tan(-----------------------------------------------------) *x x 2 2 2 + sqrt( - x + 1)*sqrt( - acos(x) + 1)*acos(x) *x 2 2 2 sqrt( - x + 1)*asin(acos(x)) + 2*sqrt( - x + 1)*x 2 3 + 4*acos(x) *tan(-----------------------------------------------------) *x x 2 3 + 4*acos(x) *x 2 2 sqrt( - x + 1)*asin(acos(x)) + 2*sqrt( - x + 1)*x 2 - asin(acos(x))*tan(-----------------------------------------------------) x 2 2 - asin(acos(x)) - sqrt( - x + 1)*sqrt( - acos(x) + 1) 2 2 sqrt( - x + 1)*asin(acos(x)) + 2*sqrt( - x + 1)*x 2 *tan(-----------------------------------------------------) *x x 2 2 - sqrt( - x + 1)*sqrt( - acos(x) + 1)*x 2 2 sqrt( - x + 1)*asin(acos(x)) + 2*sqrt( - x + 1)*x 2 3 3 - 2*tan(-----------------------------------------------------) *x - 2*x )/( x 2 2 4 2 sqrt( - x + 1)*x *(acos(x) - 2*acos(x) + 1)) % 20 Oct 99. % This gave a wrong answer. a1:=12x^2-16x+3; 2 a1 := 12*x - 16*x + 3 a2:=3x-4; a2 := 3*x - 4 off mcd; on combineexpt; e^(a1/a2); -1 2 -1 -1 12*(3*x - 4) *x - 16*(3*x - 4) *x + 3*(3*x - 4) e on mcd; off combineexpt; clear a1,a2; % 8 Nov 99. % This gave a catastrophic error. factorize(2*c*s*u^3*v^5-2*c*s*u^3*v +2*c*s*u*v^5-2*c*s*u*v -s^2*u^4*v^4+s^2*u^4+s^2*u^2*v^6-s^2*u^2*v^4-s^2*u^2*v^2 +s^2*u^2 +s^2*v^6-s^2*v^2+u^4*v^4-u^4*v^2 -v^4+v^2); 3 2 2 2 2 2 2 4 2 2 2 2 2 {{2*c*s*u*v + 2*c*s*u*v - s *u *v - s *u + s *v + s *v + u *v - v , 1}, 2 {u + 1,1}, {v + 1,1}, {v - 1,1}} % 18 Dec 99. % The following integration generated a catastrophic error. load_package numeric; on rounded; f := exp(10*exp(-x)*(x+1-0.1))$ num_int(f,x=(0 .. 300)); 5615.56420985 off rounded; clear f; % 31 Jan 00. % This gave an error that x was invalid as a kernel. weight x=1,y=1; {} wtlevel 10; 1 factor x; symbolic(wtl!* := asymplis!* := nil); remfac x; % 5 Feb 00. % This gave a spurious error. matx := mat((1,2)); matx := [1 2] sign sqrt 42; 1 % 6 Feb 00. % This gave a wrong answer. on complex; sqrt(i*sqrt(3)-1); sqrt(2)*(i*sqrt(3) + 1) ------------------------- 2 off complex; % 10 Feb 00. % This gave the error that "***** x= - 2.61803398875 invalid as scalar." on rounded,fullroots; solve(x^3+4*x^2+4*x+1,x); {x= - 2.61803398875,x= - 0.38196601125,x=-1} off rounded,fullroots; % 18 Feb 00. % This used to cause a type mismatch error. m := mat((a,b),(c,d)); [a b] m := [ ] [c d] det sub(a=1,m); - b*c + d % 18 Apr 00. % matchlength!* can now be set to match more products. for all a let opr(a*v) = a*opr(v); *** opr declared operator opr(a1*a2*a3*a4*a5*v); opr(a1*a2*a3*a4*a5*v) matchlength!* := 6; matchlength* := 6 opr(a1*a2*a3*a4*a5*v); opr(v)*a1*a2*a3*a4*a5 % 22 Apr 00; % This example created a long list in oldrules!*. procedure hu (x); wq(x) := x^2; hu wq(2) := 20; *** wq declared operator wq(2) := 20 for i:=1:1000 do hu i; for i:=1:1000 do hu i; lisp length oldrules!*; 0 % 28 Jul 00. % A sum index within a derivative was treated as an identifier. sum(x^n/factorial n*sub(x=0,df(cos x,x,n)),n,0,5); 4 2 x - 12*x + 24 ----------------- 24 % 2 Aug 00. % With complex on, some factorizations seemed to run forever. on complex; factorize (400*y^12+400*y^10*z+40*y^9*z^2+100*y^8*z^2 +20*y^7*z^5+120*y^7*z^4+20*y^7*z^3+41*y^6*z^4+60*y^5*z^7 +60*y^5*z^5+20*y^4*z^7+6*y^4*z^6+20*y^4*z^5 +2*y^3*z^6+9*y^2*z^8+6*y*z^8+z^8); 12 10 9 2 8 2 7 5 7 4 7 3 {{400*y + 400*y *z + 40*y *z + 100*y *z + 20*y *z + 120*y *z + 20*y *z 6 4 5 7 5 5 4 7 4 6 4 5 3 6 + 41*y *z + 60*y *z + 60*y *z + 20*y *z + 6*y *z + 20*y *z + 2*y *z 2 8 8 8 + 9*y *z + 6*y*z + z , 1}} off complex; % 29 Aug 00. % This caused a segmentation violation or similar error. load_package gentran,scope; matrix aaa(10,10); on gentranopt; gentran aaa(1,1) ::=: aaa(1,1); real aaa(n,n) aaa(1,1)=0.0 t off gentranopt; % 19 Sep 00. % This used to give a spurious "not found" message. sqrt_:= {sqrt(~x/~y) => sqrt x/sqrt y}; ~x sqrt(x) sqrt_ := {sqrt(----) => ---------} ~y sqrt(y) clearrules sqrt_; clear sqrt_; % 20 Sep 00. % The following caused a catastrophic error. load_package algint; int(1/sqrt((2*e^c-y)/(e^c*y)),y); c c/2 c c sqrt(2*e - y) e *( - sqrt(y)*sqrt(2*e - y) + e *int(--------------------------,y)) c 2*sqrt(y)*e - sqrt(y)*y % 8 Nov 00. % The following did not optimize completely. load_package scope; dX1 := - sqrt(abs(k_l*mttx1 - k_l*mttx2))*sign(k_l*mttx1 - k_l*mttx2)*f*mttu5 + sqrt(abs(k_l*mttx1 - k_s*mttx3 - mttu3))* sign( - k_l*mttx1 + k_s*mttx3 + mttu3)*f*mttu6 + sqrt(abs(k_l*mttx1 - k_s*mttx4 - mttu4))* sign( - k_l*mttx1 + k_s*mttx4 + mttu4)*f*mttu7 - mttu2$ dX2 := sqrt(abs(k_l*mttx1 - k_l*mttx2))*sign(k_l*mttx1 - k_l*mttx2)*f*mttu5 - sqrt(abs(k_l*mttx2 - k_s*mttx3))*sign(k_l*mttx2 - k_s*mttx3)*f*mttu8 - sqrt(abs(k_l*mttx2 - k_s*mttx4))*sign(k_l*mttx2 - k_s*mttx4)*f*mttu9 + mttu1$ dX3 := f*( - sqrt(abs(k_l*mttx1 - k_s*mttx3 - mttu3))* sign( - k_l*mttx1 + k_s*mttx3 + mttu3)*mttu6 + sqrt(abs(k_l*mttx2 - k_s*mttx3))* sign(k_l*mttx2 - k_s*mttx3)*mttu8)$ dX4 := f*( - sqrt(abs(k_l*mttx1 - k_s*mttx4 - mttu4))* sign( - k_l*mttx1 + k_s*mttx4 + mttu4)*mttu7 + sqrt(abs(k_l*mttx2 - k_s*mttx4))* sign(k_l*mttx2 - k_s*mttx4)*mttu9)$ optimize dX1 :=: dX1, dX2 :=: dX2, dX3 :=: dX3, dX4 :=: dX4 iname s$ s31 := mttx2*k_l s33 := mttx1*k_l s3 := s33 - s31 s32 := mttx3*k_s s7 := s32 - s33 + mttu3 s30 := mttx4*k_s s11 := s30 - s33 + mttu4 s26 := mttu7*sign(s11)*sqrt(abs( - s11))*f s28 := mttu6*sign(s7)*sqrt(abs( - s7))*f s29 := mttu5*f*sign(s3)*sqrt(abs(s3)) dx1 := s26 + s28 - s29 - mttu2 s15 := s31 - s32 s19 := s31 - s30 s25 := mttu9*sign(s19)*sqrt(abs(s19))*f s27 := mttu8*sign(s15)*sqrt(abs(s15))*f dx2 := s29 + mttu1 - s25 - s27 dx3 := s27 - s28 dx4 := s25 - s26 remprop('!:rd!:,'intequivfn); rdintequiv % 20 Nov 00. % This used to return results in the wrong order. noncom u,v; sum(u(n)*v(1-n),n,0,1); *** u declared operator *** v declared operator u(1)*v(0) + u(0)*v(1) % 13 Dec 00. % This used to go into an infinite loop. on numval,rounded; y:=x^4+x3*x^3+x2*x^2+x1*x+x0; 4 3 2 y := x + x *x3 + x *x2 + x*x1 + x0 on fullroots; % This one takes a long time. % solve(y,x)$ off numval,rounded,fullroots; clear y; % 9 Jan 01. solve({y=x+t^2,x=y+u^2},{x,y,u,t}); 2 {{x=y - t , y=arbcomplex(4), u=t*i, t=arbcomplex(3)}, 2 {x=y - t , y=arbcomplex(2), u= - t*i, t=arbcomplex(1)}} % 14 Jan 01. % This caused an error. resultant(p^3-3p^2-a,3p*(p-2),p); 27*a*(a + 4) % 19 Jan 01. % Some algebraic integrals could produce a catastrophic error. % Unfortunately, there is no simple example of this problem. % 22 Jan 01. % This used to give a spurious zero divisor error. int((sqrt((-sqrt(a^4*x^2+4)+a^2*x)/(2*x)) *(-sqrt(a^4*x^2+4)*a^2*x-a^4*x^2-4))/(2*(a^4*x^2+4)),x); 4 2 2 sqrt( - sqrt(a *x + 4) + a *x) (sqrt(2)*( - 4*int(---------------------------------,x) 4 2 sqrt(x)*a *x + 4*sqrt(x) 4 2 2 sqrt(x)*sqrt( - sqrt(a *x + 4) + a *x)*x 4 - int(-------------------------------------------,x)*a 4 2 a *x + 4 4 2 4 2 2 sqrt(x)*sqrt(a *x + 4)*sqrt( - sqrt(a *x + 4) + a *x) 2 - int(---------------------------------------------------------,x)*a 4 2 a *x + 4 ))/4 % This used to return an incorrect result. noncom q; 1/mat((1,0,0),(x/p*q 1,1,0),(x*y/(2p*(p-1))*q 1*q 1,y/(p-2)*q 1,1)); *** q declared operator [ 1 0 0] [ ] [ - x*q(1) ] [ ----------- 1 0] [ p ] [ ] [ 2 ] [ x*y*q(1) - y*q(1) ] [------------------ ----------- 1] [ 2 p - 2 ] [ 2*(p - 3*p + 2) ] % 2 Feb 01. % This used to give a spurious zero divisor error. solve(sqrt x*sqrt((4x^2*x+1)/x)-1=0,x); {x=0} % 9 Feb 01. % The patched version of combine!-logs included an undefined macro. % No test is included for this. % 20 Feb 01. % Even with combineexpt on, some expressions did not simplify adequately. on combineexpt; a*a^x; x + 1 a e*e^(2/(2-x)); (x - 4)/(x - 2) e e^(x+3)*e^(3/(4-3*x))/e^(5*x-3); 2 ( - 12*x + 34*x - 27)/(3*x - 4) e off combineexpt; % 6 Mar 01. % This produced a stream of "***** Unexpected algebraic" messages and % then aborted. int((x^(2/3)*sqrt(sqrt(y)*sqrt(pi) + 2*pi*y*x)*sqrt( - sqrt(y)*sqrt(pi) + 2pi*y*x))/(4pi*y*x^3 - x),x); sqrt(sqrt(y)*sqrt(pi) + 2*pi*x*y)*sqrt( - sqrt(y)*sqrt(pi) + 2*pi*x*y) int(------------------------------------------------------------------------,x) 1/3 2 1/3 4*x *pi*x *y - x end; 4: 4: 4: 4: 4: 4: 4: 4: 4: Time for test: 30720 ms, plus GC time: 1070 ms 5: 5: Quitting Tue Mar 6 13:52:51 PST 2001