Artifact 2ab65aadbb29d6c6070cbea2f9ada42f8afc9ca7c56d51c620845aac2cd17e85:
- Executable file
r38/log/geoprover.rlg
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 25218) [annotate] [blame] [check-ins using] [more...]
Tue Apr 15 00:36:16 2008 run on win32 Geoprover 1.3a Last update December 30, 2002 % GeoProver test file for Reduce, created on Jan 18 2003 load cali,geoprover; off nat; on echo; %in "$reduce/packages/geometry/supp.red"$ %############################################################### % % FILE: supp.red % AUTHOR: graebe % CREATED: 2/2002 % PURPOSE: Interface for the extended GEO syntax to Reduce % VERSION: $Id: supp.red,v 1.1 2002/12/26 16:27:22 compalg Exp $ algebraic procedure geo_simplify u; u; geo_simplify$ algebraic procedure geo_normal u; u; geo_normal$ algebraic procedure geo_subs(a,b,c); sub(a=b,c); geo_subs$ algebraic procedure geo_gbasis(polys,vars); begin setring(vars,{},lex); setideal(uhu,polys); return gbasis uhu; end; geo_gbasis$ algebraic procedure geo_groebfactor(polys,vars,nondeg); begin setring(vars,{},lex); return groebfactor(polys,nondeg); end; geo_groebfactor$ algebraic procedure geo_normalf(p,polys,vars); begin setring(vars,{},lex); return p mod polys; end; geo_normalf$ algebraic procedure geo_eliminate(polys,vars,elivars); begin setring(vars,{},lex); return eliminate(polys,elivars); end; geo_eliminate$ algebraic procedure geo_solve(polys,vars); solve(polys,vars); geo_solve$ algebraic procedure geo_solveconstrained(polys,vars,nondegs); begin scalar u; setring(vars,{},lex); u:=groebfactor(polys,nondegs); return for each x in u join solve(x,vars); end; geo_solveconstrained$ algebraic procedure geo_eval(con,sol); for each x in sol collect sub(x,con); geo_eval$ % end; % Example Arnon % % The problem: % Let $ABCD$ be a square and $P$ a point on the line parallel to $BD$ % through $C$ such that $l(BD)=l(BP)$, where $l(BD)$ denotes the % distance between $B$ and $D$. Let $Q$ be the intersection point of % $BF$ and $CD$. Show that $l(DP)=l(DQ)$. % % The solution: vars_:=List(x1, x2, x3); vars_ := {x1,x2,x3}$ % Points A__:=Point(0,0); a__ := {0,0}$ B__:=Point(1,0); b__ := {1,0}$ P__:=Point(x1,x2); p__ := {x1,x2}$ % coordinates D__:=rotate(A__,B__,1/2); d__ := {0,1}$ C__:=par_point(D__,A__,B__); c__ := {1,1}$ Q__:=varpoint(D__,C__,x3); q__ := {x3,1}$ % polynomials polys_:=List(on_line(P__,par_line(C__,pp_line(B__,D__))), eq_dist(B__,D__,B__,P__), on_line(Q__,pp_line(B__,P__))); polys_ := {x1 + x2 - 2, - x1**2 + 2*x1 - x2**2 + 1, - x1 + x2*x3 - x2 + 1}$ % conclusion con_:=eq_dist(D__,P__,D__,Q__); con_ := x1**2 + x2**2 - 2*x2 - x3**2 + 1$ % solution gb_:=geo_gbasis(polys_,vars_); gb_ := {x3**2 + 2*x3 - 2,2*x2 - x3 - 2,2*x1 + x3 - 2}$ result_:=geo_normalf(con_,gb_,vars_); result_ := 0$ % Example CircumCenter_1 % % The problem: % The intersection point of the midpoint perpendiculars is the % center of the circumscribed circle. % % The solution: parameters_:=List(a1, a2, b1, b2, c1, c2); parameters_ := {a1, a2, b1, b2, c1, c2}$ % Points A__:=Point(a1,a2); a__ := {a1,a2}$ B__:=Point(b1,b2); b__ := {b1,b2}$ C__:=Point(c1,c2); c__ := {c1,c2}$ % coordinates M__:=intersection_point(p_bisector(A__,B__), p_bisector(B__,C__)); m__ := {(a1**2*b2 - a1**2*c2 + a2**2*b2 - a2**2*c2 - a2*b1**2 - a2*b2**2 + a2*c1 **2 + a2*c2**2 + b1**2*c2 + b2**2*c2 - b2*c1**2 - b2*c2**2)/(2*(a1*b2 - a1*c2 - a2*b1 + a2*c1 + b1*c2 - b2*c1)), ( - a1**2*b1 + a1**2*c1 + a1*b1**2 + a1*b2**2 - a1*c1**2 - a1*c2**2 - a2**2*b1 + a2**2*c1 - b1**2*c1 + b1*c1**2 + b1*c2**2 - b2**2*c1)/(2*(a1*b2 - a1*c2 - a2*b1 + a2*c1 + b1*c2 - b2*c1))}$ % conclusion result_:=List( eq_dist(M__,A__,M__,B__), eq_dist(M__,A__,M__,C__) ); result_ := {0,0}$ % Example EulerLine_1 % % The problem: % Euler's line: The center $M$ of the circumscribed circle, % the orthocenter $H$ and the barycenter $S$ are collinear and $S$ % divides $MH$ with ratio 1:2. % % The solution: parameters_:=List(a1, a2, b1, b2, c1, c2); parameters_ := {a1, a2, b1, b2, c1, c2}$ % Points A__:=Point(a1,a2); a__ := {a1,a2}$ B__:=Point(b1,b2); b__ := {b1,b2}$ C__:=Point(c1,c2); c__ := {c1,c2}$ % coordinates S__:=intersection_point(median(A__,B__,C__),median(B__,C__,A__)); s__ := {(a1 + b1 + c1)/3,(a2 + b2 + c2)/3}$ M__:=intersection_point(p_bisector(A__,B__), p_bisector(B__,C__)); m__ := {(a1**2*b2 - a1**2*c2 + a2**2*b2 - a2**2*c2 - a2*b1**2 - a2*b2**2 + a2*c1 **2 + a2*c2**2 + b1**2*c2 + b2**2*c2 - b2*c1**2 - b2*c2**2)/(2*(a1*b2 - a1*c2 - a2*b1 + a2*c1 + b1*c2 - b2*c1)), ( - a1**2*b1 + a1**2*c1 + a1*b1**2 + a1*b2**2 - a1*c1**2 - a1*c2**2 - a2**2*b1 + a2**2*c1 - b1**2*c1 + b1*c1**2 + b1*c2**2 - b2**2*c1)/(2*(a1*b2 - a1*c2 - a2*b1 + a2*c1 + b1*c2 - b2*c1))}$ H__:=intersection_point(altitude(A__,B__,C__),altitude(B__,C__,A__)); h__ := {( - a1*a2*b1 + a1*a2*c1 + a1*b1*b2 - a1*c1*c2 - a2**2*b2 + a2**2*c2 + a2 *b2**2 - a2*c2**2 - b1*b2*c1 + b1*c1*c2 - b2**2*c2 + b2*c2**2)/(a1*b2 - a1*c2 - a2*b1 + a2*c1 + b1*c2 - b2*c1), (a1**2*b1 - a1**2*c1 + a1*a2*b2 - a1*a2*c2 - a1*b1**2 + a1*c1**2 - a2*b1*b2 + a2 *c1*c2 + b1**2*c1 + b1*b2*c2 - b1*c1**2 - b2*c1*c2)/(a1*b2 - a1*c2 - a2*b1 + a2* c1 + b1*c2 - b2*c1)}$ % conclusion result_:=List(is_collinear(M__,H__,S__), sqrdist(S__,fixedpoint(M__,H__,1/3))); result_ := {0,0}$ % Example Brocard_3 % % The problem: % Theorem about the Brocard points: % Let $\Delta\,ABC$ be a triangle. The circles $c_1$ through $A,B$ and % tangent to $g(AC)$, $c_2$ through $B,C$ and tangent to $g(AB)$, and % $c_3$ through $A,C$ and tangent to $g(BC)$ pass through a common % point. % % The solution: parameters_:=List(u1, u2); parameters_ := {u1,u2}$ % Points A__:=Point(0,0); a__ := {0,0}$ B__:=Point(1,0); b__ := {1,0}$ C__:=Point(u1,u2); c__ := {u1,u2}$ % coordinates M_1_:=intersection_point(altitude(A__,A__,C__),p_bisector(A__,B__)); m_1_ := {1/2,( - u1)/(2*u2)}$ M_2_:=intersection_point(altitude(B__,B__,A__),p_bisector(B__,C__)); m_2_ := {1,(u1**2 - 2*u1 + u2**2 + 1)/(2*u2)}$ M_3_:=intersection_point(altitude(C__,C__,B__),p_bisector(A__,C__)); m_3_ := {( - u1**2 + 2*u1 - u2**2)/2,(u1**3 - u1**2 + u1*u2**2 + u2**2)/(2*u2)}$ c1_:=pc_circle(M_1_,A__); c1_ := {u2, - u2,u1,0}$ c2_:=pc_circle(M_2_,B__); c2_ := {u2, - 2*u2, - u1**2 + 2*u1 - u2**2 - 1,u2}$ c3_:=pc_circle(M_3_,C__); c3_ := {u2, u2*(u1**2 - 2*u1 + u2**2), - u1**3 + u1**2 - u1*u2**2 - u2**2, 0}$ P__:=other_cc_point(B__,c1_,c2_); p__ := {(u1**3 - u1**2 + u1*u2**2 + u1 + u2**2)/(u1**4 - 2*u1**3 + 2*u1**2*u2**2 + 3*u1**2 - 2*u1*u2**2 - 2*u1 + u2**4 + 3*u2**2 + 1), (u2*(u1**2 - 2*u1 + u2**2 + 1))/(u1**4 - 2*u1**3 + 2*u1**2*u2**2 + 3*u1**2 - 2* u1*u2**2 - 2*u1 + u2**4 + 3*u2**2 + 1)}$ % conclusion result_:= on_circle(P__,c3_); result_ := 0$ % Example Feuerbach_1 % % The problem: % Feuerbach's circle or nine-point circle: The midpoint $N$ of $MH$ is % the center of a circle that passes through nine special points, the % three pedal points of the altitudes, the midpoints of the sides of the % triangle and the midpoints of the upper parts of the three altitudes. % % The solution: parameters_:=List(u1, u2, u3); parameters_ := {u1,u2,u3}$ % Points A__:=Point(0,0); a__ := {0,0}$ B__:=Point(u1,0); b__ := {u1,0}$ C__:=Point(u2,u3); c__ := {u2,u3}$ % coordinates H__:=intersection_point(altitude(A__,B__,C__),altitude(B__,C__,A__)); h__ := {u2,(u2*(u1 - u2))/u3}$ D__:=intersection_point(pp_line(A__,B__),pp_line(H__,C__)); d__ := {u2,0}$ M__:=intersection_point(p_bisector(A__,B__), p_bisector(B__,C__)); m__ := {u1/2,( - u1*u2 + u2**2 + u3**2)/(2*u3)}$ N__:=midpoint(M__,H__); n__ := {(u1 + 2*u2)/4,(u1*u2 - u2**2 + u3**2)/(4*u3)}$ % conclusion result_:=List( eq_dist(N__,midpoint(A__,B__),N__,midpoint(B__,C__)), eq_dist(N__,midpoint(A__,B__),N__,midpoint(H__,C__)), eq_dist(N__,midpoint(A__,B__),N__,D__) ); result_ := {0,0,0}$ % Example FeuerbachTangency_1 % % The problem: % For an arbitrary triangle $\Delta\,ABC$ Feuerbach's circle (nine-point % circle) is tangent to its 4 tangent circles. % % The solution: vars_:=List(x1, x2); vars_ := {x1,x2}$ parameters_:=List(u1, u2); parameters_ := {u1,u2}$ % Points A__:=Point(0,0); a__ := {0,0}$ B__:=Point(2,0); b__ := {2,0}$ C__:=Point(u1,u2); c__ := {u1,u2}$ P__:=Point(x1,x2); p__ := {x1,x2}$ % coordinates M__:=intersection_point(p_bisector(A__,B__), p_bisector(B__,C__)); m__ := {1,(u1**2 - 2*u1 + u2**2)/(2*u2)}$ H__:=intersection_point(altitude(A__,B__,C__),altitude(B__,C__,A__)); h__ := {u1,(u1*( - u1 + 2))/u2}$ N__:=midpoint(M__,H__); n__ := {(u1 + 1)/2,( - u1**2 + 2*u1 + u2**2)/(4*u2)}$ c1_:=pc_circle(N__,midpoint(A__,B__)); c1_ := {2*u2, - 2*u2*(u1 + 1), u1**2 - 2*u1 - u2**2, 2*u1*u2}$ Q__:=pedalpoint(P__,pp_line(A__,B__)); q__ := {x1,0}$ % polynomials polys_:=List(on_bisector(P__,A__,B__,C__), on_bisector(P__,B__,C__,A__)); polys_ := {2*( - 2*u1*x1*x2 + 4*u1*x2 + u2*x1**2 - 4*u2*x1 - u2*x2**2 + 4*u2 + 4 *x1*x2 - 8*x2), 2*( - u1**3*x2 + u1**2*u2*x1 - u1**2*u2 + u1**2*x1*x2 + 2*u1**2*x2 - u1*u2**2*x2 - u1*u2*x1**2 + u1*u2*x2**2 - 2*u1*x1*x2 + u2**3*x1 - u2**3 - u2**2*x1*x2 + 2* u2**2*x2 + u2*x1**2 - u2*x2**2)}$ % conclusion con_:=is_cc_tangent(pc_circle(P__,Q__),c1_); con_ := 16*u2*( - u1**3*x1*x2 + u1**3*x2 + u1**2*u2*x1**2 - 2*u1**2*u2*x1 - u1** 2*u2*x2**2 + u1**2*u2 + u1**2*x1**2*x2 + u1**2*x1*x2 - 2*u1**2*x2 + u1*u2**2*x1* x2 - u1*u2**2*x2 - 2*u1*u2*x1**3 + 4*u1*u2*x1**2 - 2*u1*u2*x1 + 2*u1*u2*x2**2 - 2*u1*x1**2*x2 + 2*u1*x1*x2 - u2**2*x1**2*x2 + u2**2*x1*x2 + u2*x1**4 - 2*u2*x1** 3 + u2*x1**2 - u2*x2**2)$ % solution gb_:=geo_gbasis(polys_,vars_); gb_ := {u1**2*u2*x2**2 - 2*u1**2*x2**3 - 2*u1*u2*x2**2 + 4*u1*x2**3 + u2**3*x2** 2 - u2**3 - 2*u2**2*x2**3 + 4*u2**2*x2 + u2*x2**4 - 4*u2*x2**2, - u1**2*u2*x2 - 2*u1**2*x2**2 + u1*u2**2*x1 - u1*u2**2 + 2*u1*u2*x2 + 4*u1*x2** 2 - u2**2*x1 - u2**2*x2**2 + 2*u2**2 + u2*x2**3 - 4*u2*x2}$ result_:=geo_normalf(con_,gb_,vars_); result_ := 0$ % Example GeneralizedFermatPoint_1 % % The problem: % A generalized theorem about Napoleon triangles: % Let $\Delta\,ABC$ be an arbitrary triangle and $P,Q$ and $R$ the third % vertex of isosceles triangles with equal base angles erected % externally on the sides $BC, AC$ and $AB$ of the triangle. Then the % lines $g(AP), g(BQ)$ and $g(CR)$ pass through a common point. % % The solution: vars_:=List(x1, x2, x3, x4, x5); vars_ := {x1, x2, x3, x4, x5}$ parameters_:=List(u1, u2, u3); parameters_ := {u1,u2,u3}$ % Points A__:=Point(0,0); a__ := {0,0}$ B__:=Point(2,0); b__ := {2,0}$ C__:=Point(u1,u2); c__ := {u1,u2}$ P__:=Point(x1,x2); p__ := {x1,x2}$ Q__:=Point(x3,x4); q__ := {x3,x4}$ R__:=Point(x5,u3); r__ := {x5,u3}$ % polynomials polys_:=List(eq_dist(P__,B__,P__,C__), eq_dist(Q__,A__,Q__,C__), eq_dist(R__,A__,R__,B__), eq_angle(R__,A__,B__,P__,B__,C__), eq_angle(Q__,C__,A__,P__,B__,C__)); polys_ := { - u1**2 + 2*u1*x1 - u2**2 + 2*u2*x2 - 4*x1 + 4, - u1**2 + 2*u1*x3 - u2**2 + 2*u2*x4, 4*(x5 - 1), (u1*u3*x1 - 2*u1*u3 - u1*x2*x5 + u2*u3*x2 + u2*x1*x5 - 2*u2*x5 - 2*u3*x1 + 4*u3 + 2*x2*x5)/(x5*(u1*x1 - 2*u1 + u2*x2 - 2*x1 + 4)), ( - u1**3*x2 + u1**2*u2*x1 - 2*u1**2*u2 - u1**2*x1*x4 + u1**2*x2*x3 + 2*u1**2*x2 + 2*u1**2*x4 - u1*u2**2*x2 + 2*u1*x1*x4 - 2*u1*x2*x3 - 4*u1*x4 + u2**3*x1 - 2* u2**3 - u2**2*x1*x4 + u2**2*x2*x3 + 2*u2**2*x2 + 2*u2**2*x4 - 2*u2*x1*x3 - 2*u2* x2*x4 + 4*u2*x3)/(u1**3*x1 - 2*u1**3 + u1**2*u2*x2 - u1**2*x1*x3 - 2*u1**2*x1 + 2*u1**2*x3 + 4*u1**2 + u1*u2**2*x1 - 2*u1*u2**2 - u1*u2*x1*x4 - u1*u2*x2*x3 + 2* u1*u2*x4 + 2*u1*x1*x3 - 4*u1*x3 + u2**3*x2 - 2*u2**2*x1 - u2**2*x2*x4 + 4*u2**2 + 2*u2*x1*x4 - 4*u2*x4)}$ % conclusion con_:=is_concurrent(pp_line(A__,P__), pp_line(B__,Q__), pp_line(C__,R__)); con_ := - u1*u3*x1*x4 + u1*u3*x2*x3 - 2*u1*u3*x2 + 2*u1*x2*x4 + u2*x1*x4*x5 - 2 *u2*x1*x4 - u2*x2*x3*x5 + 2*u2*x2*x5 + 2*u3*x1*x4 - 2*x2*x4*x5$ % solution sol_:=geo_solve(polys_,vars_); sol_ := {{x1=(u1 - u2*u3 + 2)/2, x2=(u1*u3 + u2 - 2*u3)/2, x3=(u1 + u2*u3)/2, x4=( - u1*u3 + u2)/2, x5=1}}$ result_:=geo_eval(con_,sol_); result_ := {0}$ % Example TaylorCircle_1 % % The problem: % Let $\Delta\,ABC$ be an arbitrary triangle. Consider the three % altitude pedal points and the pedal points of the perpendiculars from % these points onto the the opposite sides of the triangle. Show that % these 6 points are on a common circle, the {\em Taylor circle}. % % The solution: parameters_:=List(u1, u2, u3); parameters_ := {u1,u2,u3}$ % Points A__:=Point(u1,0); a__ := {u1,0}$ B__:=Point(u2,0); b__ := {u2,0}$ C__:=Point(0,u3); c__ := {0,u3}$ % coordinates P__:=pedalpoint(A__,pp_line(B__,C__)); p__ := {(u2*(u1*u2 + u3**2))/(u2**2 + u3**2), (u2*u3*( - u1 + u2))/(u2**2 + u3**2)}$ Q__:=pedalpoint(B__,pp_line(A__,C__)); q__ := {(u1*(u1*u2 + u3**2))/(u1**2 + u3**2), (u1*u3*(u1 - u2))/(u1**2 + u3**2)}$ R__:=pedalpoint(C__,pp_line(A__,B__)); r__ := {0,0}$ P_1_:=pedalpoint(P__,pp_line(A__,B__)); p_1_ := {(u2*(u1*u2 + u3**2))/(u2**2 + u3**2),0}$ P_2_:=pedalpoint(P__,pp_line(A__,C__)); p_2_ := {(u1*(u1**2*u2**2 + 2*u1*u2*u3**2 + u3**4))/(u1**2*u2**2 + u1**2*u3**2 + u2**2*u3**2 + u3**4), (u3**3*(u1**2 - 2*u1*u2 + u2**2))/(u1**2*u2**2 + u1**2*u3**2 + u2**2*u3**2 + u3 **4)}$ Q_1_:=pedalpoint(Q__,pp_line(A__,B__)); q_1_ := {(u1*(u1*u2 + u3**2))/(u1**2 + u3**2),0}$ Q_2_:=pedalpoint(Q__,pp_line(B__,C__)); q_2_ := {(u2*(u1**2*u2**2 + 2*u1*u2*u3**2 + u3**4))/(u1**2*u2**2 + u1**2*u3**2 + u2**2*u3**2 + u3**4), (u3**3*(u1**2 - 2*u1*u2 + u2**2))/(u1**2*u2**2 + u1**2*u3**2 + u2**2*u3**2 + u3 **4)}$ R_1_:=pedalpoint(R__,pp_line(A__,C__)); r_1_ := {(u1*u3**2)/(u1**2 + u3**2),(u1**2*u3)/(u1**2 + u3**2)}$ R_2_:=pedalpoint(R__,pp_line(B__,C__)); r_2_ := {(u2*u3**2)/(u2**2 + u3**2),(u2**2*u3)/(u2**2 + u3**2)}$ % conclusion result_:=List( is_concyclic(P_1_,P_2_,Q_1_,Q_2_), is_concyclic(P_1_,P_2_,Q_1_,R_1_), is_concyclic(P_1_,P_2_,Q_1_,R_2_)); result_ := {0,0,0}$ % Example Miquel_1 % % The problem: % Miquels theorem: Let $\Delta\,ABC$ be a triangle. Fix arbitrary points % $P,Q,R$ on the sides $AB, BC, AC$. Then the three circles through each % vertex and the chosen points on adjacent sides pass through a common % point. % % The solution: parameters_:=List(c1, c2, u1, u2, u3); parameters_ := {c1, c2, u1, u2, u3}$ % Points A__:=Point(0,0); a__ := {0,0}$ B__:=Point(1,0); b__ := {1,0}$ C__:=Point(c1,c2); c__ := {c1,c2}$ % coordinates P__:=varpoint(A__,B__,u1); p__ := {u1,0}$ Q__:=varpoint(B__,C__,u2); q__ := {c1*u2 - u2 + 1,c2*u2}$ R__:=varpoint(A__,C__,u3); r__ := {c1*u3,c2*u3}$ X__:=other_cc_point(P__,p3_circle(A__,P__,R__),p3_circle(B__,P__,Q__)); x__ := {( - c1**4*u2*u3 + c1**4*u3**2 + c1**3*u1*u2 - c1**3*u1*u3 + 2*c1**3*u2* u3 - c1**3*u3 - 2*c1**2*c2**2*u2*u3 + 2*c1**2*c2**2*u3**2 - 2*c1**2*u1*u2 - c1** 2*u1*u3 + c1**2*u1 - c1**2*u2*u3 + c1**2*u3 + c1*c2**2*u1*u2 - c1*c2**2*u1*u3 + 2*c1*c2**2*u2*u3 - c1*c2**2*u3 + c1*u1**2 + c1*u1*u2 - c1*u1 - c2**4*u2*u3 + c2 **4*u3**2 - c2**2*u1*u3 + c2**2*u1 - c2**2*u2*u3 + c2**2*u3)/(c1**4*u2**2 - 2*c1 **4*u2*u3 + c1**4*u3**2 - 4*c1**3*u2**2 + 4*c1**3*u2*u3 + 2*c1**3*u2 - 2*c1**3* u3 + 2*c1**2*c2**2*u2**2 - 4*c1**2*c2**2*u2*u3 + 2*c1**2*c2**2*u3**2 + 2*c1**2* u1*u2 - 2*c1**2*u1*u3 + 6*c1**2*u2**2 - 2*c1**2*u2*u3 - 6*c1**2*u2 + 2*c1**2*u3 + c1**2 - 4*c1*c2**2*u2**2 + 4*c1*c2**2*u2*u3 + 2*c1*c2**2*u2 - 2*c1*c2**2*u3 - 4*c1*u1*u2 + 2*c1*u1 - 4*c1*u2**2 + 6*c1*u2 - 2*c1 + c2**4*u2**2 - 2*c2**4*u2*u3 + c2**4*u3**2 + 2*c2**2*u1*u2 - 2*c2**2*u1*u3 + 2*c2**2*u2**2 - 2*c2**2*u2*u3 - 2*c2**2*u2 + 2*c2**2*u3 + c2**2 + u1**2 + 2*u1*u2 - 2*u1 + u2**2 - 2*u2 + 1), (c2*(c1**2*u1*u2 - c1**2*u1*u3 + c1**2*u3 - 2*c1*u1*u2 + c2**2*u1*u2 - c2**2*u1* u3 + c2**2*u3 + u1**2 + u1*u2 - u1))/(c1**4*u2**2 - 2*c1**4*u2*u3 + c1**4*u3**2 - 4*c1**3*u2**2 + 4*c1**3*u2*u3 + 2*c1**3*u2 - 2*c1**3*u3 + 2*c1**2*c2**2*u2**2 - 4*c1**2*c2**2*u2*u3 + 2*c1**2*c2**2*u3**2 + 2*c1**2*u1*u2 - 2*c1**2*u1*u3 + 6* c1**2*u2**2 - 2*c1**2*u2*u3 - 6*c1**2*u2 + 2*c1**2*u3 + c1**2 - 4*c1*c2**2*u2**2 + 4*c1*c2**2*u2*u3 + 2*c1*c2**2*u2 - 2*c1*c2**2*u3 - 4*c1*u1*u2 + 2*c1*u1 - 4* c1*u2**2 + 6*c1*u2 - 2*c1 + c2**4*u2**2 - 2*c2**4*u2*u3 + c2**4*u3**2 + 2*c2**2* u1*u2 - 2*c2**2*u1*u3 + 2*c2**2*u2**2 - 2*c2**2*u2*u3 - 2*c2**2*u2 + 2*c2**2*u3 + c2**2 + u1**2 + 2*u1*u2 - 2*u1 + u2**2 - 2*u2 + 1)}$ % conclusion result_:=on_circle(X__,p3_circle(C__,Q__,R__)); result_ := 0$ % Example PappusPoint_1 % % The problem: % Let $A,B,C$ and $P,Q,R$ be two triples of collinear points. Then by % the Theorem of Pappus the intersection points $g(AQ)\wedge g(BP), % g(AR)\wedge g(CP)$ and $g(BR)\wedge g(CQ)$ are collinear. % % Permuting $P,Q,R$ we get six such {\em Pappus lines}. Those % corresponding to even resp. odd permutations are concurrent. % % The solution: parameters_:=List(u1, u2, u3, u4, u5, u6, u7, u8); parameters_ := {u1, u2, u3, u4, u5, u6, u7, u8}$ % Points A__:=Point(u1,0); a__ := {u1,0}$ B__:=Point(u2,0); b__ := {u2,0}$ P__:=Point(u4,u5); p__ := {u4,u5}$ Q__:=Point(u6,u7); q__ := {u6,u7}$ % coordinates C__:=varpoint(A__,B__,u3); c__ := { - u1*u3 + u1 + u2*u3,0}$ R__:=varpoint(P__,Q__,u8); r__ := { - u4*u8 + u4 + u6*u8, - u5*u8 + u5 + u7*u8}$ % conclusion result_:=is_concurrent(pappus_line(A__,B__,C__,P__,Q__,R__), pappus_line(A__,B__,C__,Q__,R__,P__), pappus_line(A__,B__,C__,R__,P__,Q__)); result_ := 0$ % Example IMO/36_1 % % The problem: % Let $A,B,C,D$ be four distinct points on a line, in that order. The % circles with diameters $AC$ and $BD$ intersect at the points $X$ and % $Y$. The line $XY$ meets $BC$ at the point $Z$. Let $P$ be a point on % the line $XY$ different from $Z$. The line $CP$ intersects the circle % with diameter $AC$ at the points $C$ and $M$, and the line $BP$ % intersects the circle with diameter $BD$ at the points $B$ and % $N$. Prove that the lines $AM, DN$ and $XY$ are concurrent. % % The solution: vars_:=List(x1, x2, x3, x4, x5, x6); vars_ := {x1, x2, x3, x4, x5, x6}$ parameters_:=List(u1, u2, u3); parameters_ := {u1,u2,u3}$ % Points X__:=Point(0,1); x__ := {0,1}$ Y__:=Point(0,-1); y__ := {0,-1}$ M__:=Point(x1,x2); m__ := {x1,x2}$ N__:=Point(x3,x4); n__ := {x3,x4}$ % coordinates P__:=varpoint(X__,Y__,u3); p__ := {0, - 2*u3 + 1}$ Z__:=midpoint(X__,Y__); z__ := {0,0}$ l_:=p_bisector(X__,Y__); l_ := {0,1,0}$ B__:=line_slider(l_,u1); b__ := {u1,0}$ C__:=line_slider(l_,u2); c__ := {u2,0}$ A__:=line_slider(l_,x5); a__ := {x5,0}$ D__:=line_slider(l_,x6); d__ := {x6,0}$ % polynomials polys_:=List(is_concyclic(X__,Y__,B__,N__), is_concyclic(X__,Y__,C__,M__), is_concyclic(X__,Y__,B__,D__), is_concyclic(X__,Y__,C__,A__), is_collinear(B__,P__,N__), is_collinear(C__,P__,M__)); polys_ := { - u1**2*x3 + u1*x3**2 + u1*x4**2 - u1 + x3, - u2**2*x1 + u2*x1**2 + u2*x2**2 - u2 + x1, - u1**2*x6 + u1*x6**2 - u1 + x6, - u2**2*x5 + u2*x5**2 - u2 + x5, - 2*u1*u3 - u1*x4 + u1 + 2*u3*x3 - x3, - 2*u2*u3 - u2*x2 + u2 + 2*u3*x1 - x1}$ % constraints nondeg_:=List(x5-u2,x1-u2,x6-u1,x3-u1); nondeg_ := { - u2 + x5, - u2 + x1, - u1 + x6, - u1 + x3}$ % conclusion con_:=is_concurrent(pp_line(A__,M__),pp_line(D__,N__),pp_line(X__,Y__)); con_ := - x1*x4*x6 + x2*x3*x5 - x2*x5*x6 + x4*x5*x6$ % solution sol_:=geo_solveconstrained(polys_,vars_,nondeg_); sol_ := {{x1=(4*u2*u3**2 - 4*u2*u3)/(u2**2 + 4*u3**2 - 4*u3 + 1), x2=( - 2*u2**2*u3 + u2**2 - 2*u3 + 1)/(u2**2 + 4*u3**2 - 4*u3 + 1), x3=(4*u1*u3**2 - 4*u1*u3)/(u1**2 + 4*u3**2 - 4*u3 + 1), x4=( - 2*u1**2*u3 + u1**2 - 2*u3 + 1)/(u1**2 + 4*u3**2 - 4*u3 + 1), x5=( - 1)/u2, x6=( - 1)/u1}}$ result_:=geo_eval(con_,sol_); result_ := {0}$ % Example IMO/43_2 % % The problem: % % No verbal problem description available % % The solution: vars_:=List(x1, x2); vars_ := {x1,x2}$ parameters_:=List(u1); parameters_ := {u1}$ % Points B__:=Point(-1,0); b__ := {-1,0}$ C__:=Point(1,0); c__ := {1,0}$ % coordinates O__:=midpoint(B__,C__); o__ := {0,0}$ gamma_:=pc_circle(O__,B__); gamma_ := {1,0,0,-1}$ D__:=circle_slider(O__,B__,u1); d__ := {( - u1**2 + 1)/(u1**2 + 1),(2*u1)/(u1**2 + 1)}$ E__:=circle_slider(O__,B__,x1); e__ := {( - x1**2 + 1)/(x1**2 + 1),(2*x1)/(x1**2 + 1)}$ F__:=circle_slider(O__,B__,x2); f__ := {( - x2**2 + 1)/(x2**2 + 1),(2*x2)/(x2**2 + 1)}$ A__:=sym_point(B__,pp_line(O__,D__)); a__ := {( - u1**4 + 6*u1**2 - 1)/(u1**4 + 2*u1**2 + 1),(4*u1*(u1**2 - 1))/(u1**4 + 2*u1**2 + 1)}$ J__:=intersection_point(pp_line(A__,C__), par_line(O__, pp_line(A__,D__))); j__ := {(2*(3*u1**2 - 1))/(u1**4 + 2*u1**2 + 1),(2*u1*(u1**2 - 3))/(u1**4 + 2*u1 **2 + 1)}$ m_:=p_bisector(O__,A__); m_ := {2*(u1**4 - 6*u1**2 + 1),8*u1*( - u1**2 + 1),u1**4 + 2*u1**2 + 1}$ P_1_:=pedalpoint(J__,m_); p_1_ := {( - u1**8 + 20*u1**6 + 10*u1**4 - 12*u1**2 - 1)/(2*(u1**8 + 4*u1**6 + 6 *u1**4 + 4*u1**2 + 1)), (4*u1**3*(u1**4 - 2*u1**2 - 3))/(u1**8 + 4*u1**6 + 6*u1**4 + 4*u1**2 + 1)}$ P_2_:=pedalpoint(J__,pp_line(C__,E__)); p_2_ := {(u1**4 - 2*u1**3*x1 + 6*u1**2*x1**2 + 2*u1**2 + 6*u1*x1 - 2*x1**2 + 1)/ (u1**4*x1**2 + u1**4 + 2*u1**2*x1**2 + 2*u1**2 + x1**2 + 1), (u1**4*x1 + 2*u1**3 - 4*u1**2*x1 - 6*u1 + 3*x1)/(u1**4*x1**2 + u1**4 + 2*u1**2* x1**2 + 2*u1**2 + x1**2 + 1)}$ P_3_:=pedalpoint(J__,pp_line(C__,F__)); p_3_ := {(u1**4 - 2*u1**3*x2 + 6*u1**2*x2**2 + 2*u1**2 + 6*u1*x2 - 2*x2**2 + 1)/ (u1**4*x2**2 + u1**4 + 2*u1**2*x2**2 + 2*u1**2 + x2**2 + 1), (u1**4*x2 + 2*u1**3 - 4*u1**2*x2 - 6*u1 + 3*x2)/(u1**4*x2**2 + u1**4 + 2*u1**2* x2**2 + 2*u1**2 + x2**2 + 1)}$ % polynomials polys_:=List(on_line(E__,m_), on_line(F__,m_)); polys_ := {( - u1**4*x1**2 + 3*u1**4 - 16*u1**3*x1 + 14*u1**2*x1**2 - 10*u1**2 + 16*u1*x1 - x1**2 + 3)/(x1**2 + 1), ( - u1**4*x2**2 + 3*u1**4 - 16*u1**3*x2 + 14*u1**2*x2**2 - 10*u1**2 + 16*u1*x2 - x2**2 + 3)/(x2**2 + 1)}$ % constraints nondegs_:=List(x1-x2); nondegs_ := {x1 - x2}$ % conclusion con_:=List(eq_dist(J__,P_1_,J__,P_2_), eq_dist(J__,P_1_,J__,P_3_)); con_ := {(u1**8*x1**4 - 2*u1**8*x1**2 - 3*u1**8 + 16*u1**7*x1**3 + 16*u1**7*x1 - 20*u1**6*x1**4 + 8*u1**6*x1**2 + 28*u1**6 - 112*u1**5*x1**3 - 112*u1**5*x1 + 94 *u1**4*x1**4 + 4*u1**4*x1**2 - 90*u1**4 + 240*u1**3*x1**3 + 240*u1**3*x1 - 132* u1**2*x1**4 - 24*u1**2*x1**2 + 108*u1**2 - 144*u1*x1**3 - 144*u1*x1 + 9*x1**4 - 18*x1**2 - 27)/(4*(u1**8*x1**4 + 2*u1**8*x1**2 + u1**8 + 4*u1**6*x1**4 + 8*u1**6 *x1**2 + 4*u1**6 + 6*u1**4*x1**4 + 12*u1**4*x1**2 + 6*u1**4 + 4*u1**2*x1**4 + 8* u1**2*x1**2 + 4*u1**2 + x1**4 + 2*x1**2 + 1)), (u1**8*x2**4 - 2*u1**8*x2**2 - 3*u1**8 + 16*u1**7*x2**3 + 16*u1**7*x2 - 20*u1**6 *x2**4 + 8*u1**6*x2**2 + 28*u1**6 - 112*u1**5*x2**3 - 112*u1**5*x2 + 94*u1**4*x2 **4 + 4*u1**4*x2**2 - 90*u1**4 + 240*u1**3*x2**3 + 240*u1**3*x2 - 132*u1**2*x2** 4 - 24*u1**2*x2**2 + 108*u1**2 - 144*u1*x2**3 - 144*u1*x2 + 9*x2**4 - 18*x2**2 - 27)/(4*(u1**8*x2**4 + 2*u1**8*x2**2 + u1**8 + 4*u1**6*x2**4 + 8*u1**6*x2**2 + 4 *u1**6 + 6*u1**4*x2**4 + 12*u1**4*x2**2 + 6*u1**4 + 4*u1**2*x2**4 + 8*u1**2*x2** 2 + 4*u1**2 + x2**4 + 2*x2**2 + 1))}$ % solution sol_:=geo_solveconstrained(polys_,vars_,nondegs_); sol_ := {{x1=(sqrt(3)*u1**4 + 2*sqrt(3)*u1**2 + sqrt(3) - 8*u1**3 + 8*u1)/(u1**4 - 14*u1**2 + 1), x2=(sqrt(3)*u1**4 + 2*sqrt(3)*u1**2 + sqrt(3) - 8*u1**3 + 8*u1)/(u1**4 - 14*u1** 2 + 1)}, {x1=(sqrt(3)*u1**4 + 2*sqrt(3)*u1**2 + sqrt(3) - 8*u1**3 + 8*u1)/(u1**4 - 14*u1 **2 + 1), x2=( - sqrt(3)*u1**4 - 2*sqrt(3)*u1**2 - sqrt(3) - 8*u1**3 + 8*u1)/(u1**4 - 14* u1**2 + 1)}, {x1=( - sqrt(3)*u1**4 - 2*sqrt(3)*u1**2 - sqrt(3) - 8*u1**3 + 8*u1)/(u1**4 - 14* u1**2 + 1), x2=(sqrt(3)*u1**4 + 2*sqrt(3)*u1**2 + sqrt(3) - 8*u1**3 + 8*u1)/(u1**4 - 14*u1** 2 + 1)}, {x1=( - sqrt(3)*u1**4 - 2*sqrt(3)*u1**2 - sqrt(3) - 8*u1**3 + 8*u1)/(u1**4 - 14* u1**2 + 1), x2=( - sqrt(3)*u1**4 - 2*sqrt(3)*u1**2 - sqrt(3) - 8*u1**3 + 8*u1)/(u1**4 - 14* u1**2 + 1)}}$ result_:=geo_simplify(geo_eval(con_,sol_)); result_ := {{0,0},{0,0},{0,0},{0,0}}$ showtime; Time: 634 ms plus GC time: 38 ms end; Time for test: 641 ms, plus GC time: 38 ms