Artifact 17ce639f29ee6cada5898509400cac6418f09a54be8715ccc950a9a7c020ac3f:
- Executable file
r37/packages/cgb/dp.red
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 28856) [annotate] [blame] [check-ins using] [more...]
% ---------------------------------------------------------------------- % $Id: dp.red,v 1.18 1999/04/13 21:44:23 sturm Exp $ % ---------------------------------------------------------------------- % Copyright (c) 1999 Andreas Dolzmann and Thomas Sturm % ---------------------------------------------------------------------- % $Log: dp.red,v $ % Revision 1.18 1999/04/13 21:44:23 sturm % Added fluid declaration for !*tdusetorder. % Added call to ev_init in dip_init. % % Revision 1.17 1999/04/13 18:42:03 dolzmann % Removed fluid declaration for !*gsugar. % Added procedure dip_comp. % % Revision 1.16 1999/04/11 09:47:01 dolzmann % Changed procedure dip_init: The current polynomial ring is defined by % parameters and not by global variables. % Moved module vdp from this file to gb.red. % Removed procedures td_usetorder and td_unusetorder and replaced them % by access functions to the global variables used by td and torder % respectively. % % Revision 1.15 1999/04/06 15:04:18 dolzmann % Moved procedures dip_append, dip_cp, dip_dcont, and dip_dcont1 from % module dipto into module dip. % Moved procedures bc_mkat, bc_dcont, and bc_2d from module bcto into the % bc modules of the dip package. % % Revision 1.14 1999/04/06 11:54:26 dolzmann % Removed module module vdpprint. % % Revision 1.13 1999/04/04 17:17:04 sturm % Turned smacros into regular procedures. % % Revision 1.12 1999/04/04 16:46:18 sturm % Added copyright and CVS fluids. % % Revision 1.11 1999/04/04 14:50:38 sturm % Implemented switch tdusetorder. % % Revision 1.10 1999/04/04 14:09:32 sturm % Moved dip_ilcomb and dip_ilcombr from cgb.red to dp.red. % Created vdp_ilcomb and vdp_ilcombr for gb.red. % % Revision 1.9 1999/04/04 12:20:31 dolzmann % Added initialization of td_sortmode!*. % % Revision 1.8 1999/04/03 13:39:16 sturm % New td/dip_init/dip_cleanup scheme. % % Revision 1.7 1999/03/31 14:09:55 sturm % Fixed numerous details encountered during CGB reimplementation. % % Revision 1.6 1999/03/17 12:33:43 dolzmann % Added new procedures vdp_monp and dip_monp. % Added new procedure ev_member. % Added new procedure ev_init. % Renamed procedure max!# into ev_max!#. % % Revision 1.5 1999/03/12 10:59:08 dolzmann % Added procedure ev_sdvip. % Moved procedure vdp_ilcomb1 and vdp_ilcomb1r into package dp and % renamed the procedures accordingly. % % Revision 1.4 1999/03/12 08:54:48 dolzmann % dded term orders lex and xrevgradlex. % Changed smacros for bc-layer and ev-layer into procedures. % Replaced all long integer arithmetic on exponents by machine % integers arithmetic. % Added procedure ev_disjointp for ev-layer independent implementation % of Buchbergers first criterion. % Procedure dip_condense now uses one call of ev_comp instead of one % call of ev_compless!? and one equal test. % Added procedure vdp_nconcmon. % Replaced the long integer arithmetic on the sugar property by % machine integer arithmetic. % Introduec procedures vdp_setnumber for plist independent Groebner % code. % Changed assoc in vdp_putprop and vdp_getprop into atsoc. % % Revision 1.3 1999/03/08 17:21:31 dolzmann % Fixed yet another bug in td_torder. Added lex term ordering mode. % % Revision 1.2 1999/03/08 16:22:53 dolzmann % Fixed some bugs in td_torder. % % Revision 1.1 1999/03/05 10:28:37 dolzmann % Newly derived from dipoly.red. Initial check-in. % % ---------------------------------------------------------------------- lisp << fluid '(dp_rcsid!* dp_copyright!*); dp_rcsid!* := "$Id: dp.red,v 1.18 1999/04/13 21:44:23 sturm Exp $"; dp_copyright!* := "Copyright (c) 1999 by A. Dolzmann and T. Sturm" >>; module dp; fluid '(kord!*); fluid '(dip_evlist!* dip_vars!* dip_sortmode!* dip_sortevcomp!* dip_sortextension!* vdpsortmode!* vdpsortextension!* global!-dipvars!*); fluid '(td_vars!* td_sortmode!* td_sortextension!* !*tdusetorder); td_vars!* := '(list); td_sortmode!* := 'revgradlex; put('td,'psopfn,'td_torder); flag('(xrevgradlex revgradlex lex),'dipsortmode); put('revgradlex,'ev_comp,'ev_revgradlexcomp); put('lex,'ev_comp,'ev_lexcomp); put('xrevgradlex,'ev_comp,'ev_xrevgradlexcomp); switch tdusetorder; on1 'tdusetorder; endmodule; % dp module bcsq; procedure bc_zero(); nil ./ 1; procedure bc_zero!?(u); null numr u; procedure bc_abs(u); absf numr u ./ denr u; procedure bc_one!?(u); numr u = 1 and denr u = 1; procedure bc_2sq(u); u; procedure bc_a2bc(u); % Converts the algebraic (kernel) u into a base coefficient. simp!* u; procedure bc_fd a; % Base coefficient from domain element. a ./ 1; procedure bc_neg(u); % Base coefficient negative. u is a base coefficient. bc_neg(u) % returns the negative of the base coefficient u, a base % coefficient. negsq u; procedure bc_prod(a,b); if denr a = 1 and numberp numr a and denr b = 1 and numberp numr b then if numr a = 1 then b else if numr b = 1 then a else if (a := times2(numr a,numr b)) = 0 then nil ./ 1 else a ./ 1 else multsq(a,b); procedure bc_quot(a,b); if denr a = 1 and numberp numr a and denr b = 1 and numberp numr b then if numr b = 1 then a else if (a := quotientx(numr a,numr b)) = 0 then nil ./ 1 else a ./ 1 else quotsq(a,b); procedure bc_sum(a,b); % Base coefficient sum. u and v are base coefficients. bcsum(u,v) % calculates u+v and returns a base coefficient. if denr a = 1 and numberp numr a and denr b = 1 and numberp numr b then if (a := plus2(numr a,numr b)) = 0 then nil ./ 1 else a ./ 1 else addsq(a,b); procedure bc_pmon(var,dg); % Parameter monomial. var .** dg .* 1 .+ nil ./ 1; procedure bc_minus!?(u); % Boolean function. Returns true if u is a negative base coeff. if fixp numr u then numr u < 0 else minusf numr u; procedure bc_2a(u); % Returns the prefix equivalent of the base coefficient u. prepsq u; procedure bc_gcd(u,v); if denr u = 1 and denr v = 1 then if fixp numr u and fixp numr v then gcdn(numr u,numr v) ./ 1 else gcdf!*(numr u,numr v) ./ 1 else 1 ./ 1; procedure bc_mkat(op,bc); {op,numr bc,nil}; procedure bc_dcont(bc); sfto_dcontentf numr bc; procedure bc_2d(bc); numr bc or 0; endmodule; % bcsq module ev; procedure ev_max!#(a,b); if a #> b then a else b; procedure ev_init(); ; procedure ev_member(ev,evl); ev member evl; procedure ev_divides!?(ev1,ev2); ev_mtest!?(ev2,ev1); procedure ev_sdivp(ev1,ev2); ev1 neq ev2 and ev_divides!?(ev1,ev2); procedure ev_xrevgradlexcomp(e1,e2); % Exponent vector reverse graduated lex compare. The exponent % vectors e1 and e2 are in reverse graduated lex ordering. % evRevGradLexcomp(e1,e2) returns the digit 0 if exponent vector e1 % is equal exponent vector e2, the digit 1 if e1 is greater than % e2, else the digit -1. begin scalar te1,te2; if null e1 then return 0; if car e1 #= car e2 then return ev_xrevgradlexcomp(cdr e1,cdr e2); te1 := ev_tdeg e1; te2 := ev_tdeg e2; if te1 #= te2 then return if car e1 #< car e2 then 1 else -1; return if te1 #> te2 then 1 else -1 end; procedure ev_lexcomp(e1,e2); % Exponent vector lexicographical compare. The exponent vectors e1 % and e2 are in lexicographical ordering. evLexComp(e1,e2) returns % the digit 0 if exponent vector e1 is equal exponent vector e2, % the digit 1 if e1 is greater than e2, else the digit -1. */ if null e1 then 0 else if car e1 #= car e2 then ev_lexcomp(cdr e1,cdr e2) else if car e1 #> car e2 then 1 else -1; procedure ev_revgradlexcomp(e1,e2); % Exponent vector reverse graduated lex compare. The exponent % vectors e1 and e2 are in reverse graduated lex ordering. % evRevGradLexcomp(e1,e2) returns the digit 0 if exponent vector e1 % is equal exponent vector e2, the digit 1 if e1 is greater than % e2, else the digit -1. begin scalar te1,te2; if null e1 then return 0; if car e1 #= car e2 then return ev_revgradlexcomp(cdr e1, cdr e2); te1 := ev_tdeg e1; te2 := ev_tdeg e2; if te1 #= te2 then return ev_invlexcomp(e1,e2); if te1 #> te2 then return 1; return -1 end; procedure ev_invlexcomp(e1,e2); % Exponent vector inverse lexicographical compare. No term order! begin scalar n; if null e1 then return 0; if car e1 #= car e2 then return ev_invlexcomp(cdr e1,cdr e2); % sic! n := ev_invlexcomp(cdr e1,cdr e2); if not (n #= 0) then return n; if car e2 #= car e1 then return 0; if car e2 #> car e1 then return 1; return -1 end; procedure ev_mtest!?(e1,e2); % Exponent vector multiple test. e1 and e2 are compatible exponent % vectors. vevmtest?(e1,e2) returns a boolean expression. True if % exponent vector e1 is a multiple of exponent vector e2, else % false. begin scalar r; r := t; while e1 and r do << if car e1 #< car e2 then e1 := r := nil else << e1 := cdr e1; e2 := cdr e2 >> >>; return r end; procedure ev_2a(e); % Returns list of prefix equivalents of exponent vector e. ev_2a1(e,dip_vars!*); procedure ev_2a1(u,v); if null u then nil else if car u #= 0 then ev_2a1(cdr u,cdr v) else if car u #= 1 then car v . ev_2a1(cdr u,cdr v) else {'expt,car v,car u} . ev_2a1(cdr u,cdr v); procedure ev_2f(ev,vars); if null ev then 1 else if car ev #= 0 then ev_2f(cdr ev,cdr vars) else multf(car vars .** car ev .* 1 .+ nil,ev_2f(cdr ev,cdr vars)); procedure ev_lcm(e1,e2); % Exponent vector least common multiple. e1 and e2 are exponent % vectors. ev_lcm(e1,e2) computes the least common multiple of the % exponent vectors e1 and e2, and returns an exponent vector. begin scalar x; while e1 do << x := (if car e1 #> car e2 then car e1 else car e2) . x; e1 := cdr e1; e2 := cdr e2 >>; return reversip x end; procedure ev_zero(); for each x in dip_vars!* collect 0; procedure ev_zero!?(ev); null ev or eqcar(ev,0) and ev_zero!? cdr ev; procedure ev_compless!?(e1,e2); ev_comp(e2,e1) #= 1; procedure ev_comp(e1,e2); % Exponent vector compare. e1, e2 are exponent vectors in some % order. Evcomp(e1,e2) returns the digit 0 if exponent vector e1 is % equal exponent vector e2, the digit 1 if e1 is greater than e2, % else the digit -1. This function is assigned a value by the % ordering mechanism, so is dummy for now. IDapply would be better % here, but is not within standard LISP! apply(dip_sortevcomp!*,{e1,e2}); procedure ev_insert(ev,v,dg,vars); % f to dip conversion: Insert the "dg" into the ev in the place of % variable v. if null ev or null vars then nil else if car vars eq v then dg . cdr ev else car ev . ev_insert(cdr ev,v,dg,cdr vars); procedure ev_tdeg(u); % calculate the total degree of u. begin integer x; while u do << x := car u #+ x; u := cdr u >>; return x end; procedure ev_dif(e1,e2); begin scalar s; while e1 do << s := (car e1 #- car e2) . s; e1 := cdr e1; e2 := cdr e2 >>; return reversip s end; procedure ev_sum(e1,e2); begin scalar s; while e1 do << s := (car e1 #+ car e2) . s; e1 := cdr e1; e2 := cdr e2 >>; return reversip s end; procedure ev_disjointp(e1,e2); % nonconstructive test of lcm(e1,e2) = e1 + e2 equivalent: no % matches of nonzero elements. if null e1 then t else if (car e1 neq 0) and (car e2 neq 0) then nil else ev_disjointp(cdr e1,cdr e2); procedure ev_identify(oev,nev); nev; endmodule; % ev module dip; procedure dip_fmon(a,e); % Distributive polynomial from monomial. a is a base coefficient % and e is an exponent vector. dip_fmon(a,e) returns a distributive % polynomial with e as exponent vector and a as base coefficient. e . a . nil; procedure dip_moncomp(a,e,p); % Distributive polynomial monomial composition. a is a base % coefficient, e is an exponent vector and p is a distributive % polynomial. dipmoncomp(a,e,p) returns a distributive polynomial % with p as monomial reductum, e as exponent vector of the leading % monomial and a as leading base coefficient. e . a . p; procedure dip_mred(p); % Distributive polynomial reductum. p is a distributive polynomial % dipmred(p) returns the reductum of the distributive polynomial p, % a distributive polynomial. cddr p; procedure dip_lbc(p); % Distributive polynomial leading base coefficient. p is a % distributive polynomial. dip_lbc(p) returns the leading base % coefficient of p. cadr p; procedure dip_evlmon(p); % Distributive polynomial exponent vector leading monomial. p is a % distributive polynomial. dipevlmon(p) returns the exponent vector % of the leading monomial of p. car p; procedure dip_init(newvars,newsortmode,newsortextension); % Initializing dip polynomial package. begin scalar vars,sortmode,sortextension,sortevcomp,evlist,newsortevcomp,z; if not idp newsortmode or not flagp(newsortmode,'dipsortmode) then return typerr(newsortmode,"term ordering mode"); % following saves thousands of calls to GET: newsortevcomp := get(newsortmode,'ev_comp); if not getd newsortevcomp then rederr "dip_init: no comparison routine found"; if (z := get(newsortmode,'evcompinit)) then apply(z,nil); if (z := get(newsortmode,'evlength)) and z neq length newvars then rederr "dip_init: wrong variable number for fixed length term order"; vars := dip_vars!*; sortmode := dip_sortmode!*; sortextension := dip_sortextension!*; sortevcomp := dip_sortevcomp!*; evlist := dip_evlist!*; dip_vars!* := newvars; dip_sortmode!* := newsortmode; dip_sortextension!* := newsortextension; dip_sortevcomp!* := newsortevcomp; dip_evlist!* := {nil}; ev_init(); return {vars,sortmode,sortextension,sortevcomp,evlist} end; procedure dip_cleanup(l); % l = (vars sortmode sortextension sortevcomp evlist). << dip_vars!* := car l; l := cdr l; dip_sortmode!* := car l; l := cdr l; dip_sortextension!* := car l; l := cdr l; dip_sortevcomp!* := car l; l := cdr l; dip_evlist!* := car l >>; procedure dip_monp(u); u and not cddr u; procedure dip_2f(u); numr dip_2sq u; procedure dip_2sq(u); % convert a dip into a standard quotient. if null u then nil ./ 1 else addsq(dip_lmon2sq(dip_lbc u,dip_evlmon u),dip_2sq dip_mred u); procedure dip_lmon2sq(bc,ev); % convert a monomial into a standard quotient. multsq(bc_2sq bc,ev_2f(ev,dip_vars!*) ./ 1); procedure dip_f2dip(u); dip_f2dip1(u,ev_zero(),bc_fd 1); procedure dip_f2dip1(u,ev,bc); % f to dip conversion: scan the standard form. ev and bc are the % exponent and coefficient parts collected so far from higher parts. if null u then nil else if domainp u then dip_fmon(bc_prod(bc,bc_fd u),ev) else dip_sum(dip_f2dip2(mvar u,ldeg u,lc u,ev,bc),dip_f2dip1(red u,ev,bc)); procedure dip_f2dip2(var,dg,c,ev,bc); % f to dip conversion: multiply leading power either into exponent % vector or into the base coefficient. if memq(var,dip_vars!*) then dip_f2dip1(c,ev_insert(ev,var,dg,dip_vars!*),bc) else dip_f2dip1(c,ev,bc_prod(bc,bc_pmon(var,dg))); procedure dip_prod(p1,p2); % Distributive polynomial product. p1 and p2 are distributive % polynomials. dipprod(p1,p2) calculates the product of the two % distributive polynomials p1 and p2, a distributive polynomial*/ if dip_length p1 <= dip_length p2 then dip_prodin(p1,p2) else dip_prodin(p2,p1); procedure dip_prodin(p1,p2); % Distributive polynomial product internal. p1 and p2 are distrib % polynomials. dipprod(p1,p2) calculates the product of the two % distributive polynomials p1 and p2, a distributive polynomial. begin scalar bp1,ep1; if null p1 or null p2 then return nil; bp1 := dip_lbc p1; ep1 := dip_evlmon p1; return dip_moncomp(bc_prod(bp1,dip_lbc p2),ev_sum(ep1,dip_evlmon p2), dip_sum(dip_prodin(dip_fmon(bp1,ep1),dip_mred p2), dip_prodin(dip_mred p1,p2))) end; procedure dip_sum(p1,p2); % Distributive polynomial sum. p1 and p2 are distributive % polynomials. dipsum(p1,p2) calculates the sum of the two % distributive polynomials p1 and p2. Iterative version, better % suited for very long polynomials. Warning: this routine uses % "dipmred" == "cdr cdr" for a destructive concatenation. begin scalar w,rw,sl,ep1,ep2,nt,al,done; while not done do << if null p1 then << nt := p2; done := t >> else if null p2 then << nt := p1; done := t >> else << ep1 := dip_evlmon p1; ep2 := dip_evlmon p2; sl := ev_comp(ep1,ep2); % Compute the next term. if sl #= 1 then << nt := dip_moncomp(dip_lbc p1,ep1,nil); p1 := dip_mred p1 >> else if sl #= -1 then << nt := dip_moncomp(dip_lbc p2,ep2,nil); p2 := dip_mred p2 >> else << al := bc_sum(dip_lbc p1,dip_lbc p2); nt := if not null al then dip_moncomp(al,ep1,nil); p1 := dip_mred p1; p2 := dip_mred p2 >> >>; % Append the term to the sum polynomial. if nt then if null w then w := rw := nt else << cdr cdr rw := nt; rw := nt >> >>; return w end; procedure dip_2a(u); % Returns prefix equivalent of distributive polynomial u. if null u then 0 else dip_replus dip_2a1 u; procedure dip_2a1(u); begin scalar x,y; if null u then return nil; x := dip_lbc u; y := ev_2a dip_evlmon u; if bc_minus!? x then return {'minus,dip_retimes(bc_2a bc_neg x . y)} . dip_2a1 dip_mred u; return dip_retimes(bc_2a x . y) . dip_2a1 dip_mred u end; procedure dip_replus(u); if atom u then u else if null cdr u then car u else 'plus . u; procedure dip_retimes(u); % U is a list of prefix expressions the first of which is a number. % Result is prefix representation for their product. if car u = 1 then if cdr u then dip_retimes cdr u else 1 else if null cdr u then car u else 'times . u; procedure dip_simpcont(p); % Calculate the contents of p and divide all coefficients by it. begin scalar c; c := dip_contenti p; if bc_minus!? dip_lbc p then c := bc_neg c; if bc_one!? c then return p; return dip_reduceconti(p,c) end; procedure dip_contenti(p); dip_contenti1(p,bc_zero()); procedure dip_contenti1(p,c); << while p do << c := bc_gcd(dip_lbc p,c); p := dip_mred p >>; bc_abs c >>; procedure dip_reduceconti(p,c); % Divide all coefficients of p by cont. if p then dip_moncomp(bc_quot(dip_lbc p,c),dip_evlmon p, dip_reduceconti(dip_mred p,c)); procedure dip_condense(f); begin scalar dl,ev,w; dl := dip_evlist!*; while f do << ev := dip_evlmon f; while cdr dl and (w := ev_comp(ev,cadr dl)) #= -1 do dl := cdr dl; if cdr dl and w #= 0 then car f := ev_identify(car f,cadr dl) else cdr dl := ev . cdr dl; f := dip_mred f >>; end; procedure dip_evlcomp(p1,p2); % Distributive polynomial exponent vector leading monomial compare. % p1 and p2 are distributive polynomials. dip_evlcomp(p1,p2) % returns a boolean expression true if the distributive polynomial % p1 is smaller or equal the distributive polynomial p2 else false. not ev_compless!?(dip_evlmon p1,dip_evlmon p2); procedure dip_length(p); % Distributive polynomial length. p is a distributive polynomial. % dip_length(p) returns the number of terms of the distributive % polynomial p, a digit. if null p then 0 else 1 + dip_length dip_mred p; procedure dip_cancelmev(f,ev); % cancels all monomials in f which are multiples of ev. if null f then nil else if ev_mtest!?(dip_evlmon f,ev) then dip_cancelmev(dip_mred f,ev) else dip_evlmon f . dip_lbc f . dip_cancelmev(dip_mred f,ev); procedure dip_bcquot(p,c); if bc_one!? c then p else dip_bcquot1(p,c); procedure dip_bcquot1(p,c); if null p then nil else dip_evlmon p . bc_quot(dip_lbc p,c) . dip_bcquot1(dip_mred p,c); procedure dip_appendmon(dip,bc,ev); append(dip,dip_fmon(bc,ev)); procedure dip_nconcmon(dip,bc,ev); nconc(dip,dip_fmon(bc,ev)); procedure dip_bcprod(p,c); if bc_zero!? c then nil else if bc_one!? c then p else dip_bcprod1(p,c); procedure dip_bcprod1(p,c); if null p then nil else dip_evlmon p . bc_prod(dip_lbc p,c) . dip_bcprod1(dip_mred p,c); procedure dip_tdeg(p); if null p then 0 else max(ev_tdeg dip_evlmon p,dip_tdeg dip_mred p); procedure dip_append(p1,p2); append(p1,p2); procedure dip_cp(p); for each x in p collect x; procedure dip_dcont(dp); dip_dcont1(dp,bc_zero()); procedure dip_dcont1(dp,c); << c := bc_2d c; while dp do << c := gcdn(c,bc_dcont dip_lbc dp); dp := dip_mred dp >>; bc_fd c >>; procedure dip_ilcomb(p1,c1,t1,p2,c2,t2); if null p1 then dip_prod(p2,dip_fmon(c2,t2)) else if null p2 then dip_prod(p1,dip_fmon(c1,t1)) else dip_ilcomb1(p1,c1,t1,p2,c2,t2); procedure dip_ilcombr(p1,c1,p2,c2,t2); if null p1 then dip_prod(p2,dip_fmon(c2,t2)) else if null p2 then dip_bcprod(p1,c1) else dip_ilcomb1r(p1,c1,p2,c2,t2); procedure dip_ilcomb1(p1,c1,t1,p2,c2,t2); % Compute p1*c1^t1+p2*c2^t2. begin scalar hc1,ht1,hc2,ht2,cmp,resl,w; ht1 := ev_sum(car p1,t1); p1 := cdr p1; hc1 := bc_prod(car p1,c1); p1 := cdr p1; ht2 := ev_sum(car p2,t2); p2 := cdr p2; hc2 := bc_prod(car p2,c2); p2 := cdr p2; while p1 and p2 do << cmp := ev_comp(ht1,ht2); % 1 = ">", -1 = "<", 0 = "=" if cmp #= 1 then << resl := hc1 . ht1 . resl; ht1 := ev_sum(car p1,t1); p1 := cdr p1; hc1 := bc_prod(car p1,c1); p1 := cdr p1 >> else if cmp #= -1 then << resl := hc2 . ht2 . resl; ht2 := ev_sum(car p2,t2); p2 := cdr p2; hc2 := bc_prod(car p2,c2); p2 := cdr p2 >> else << % cmp = 0, actually add monomials w := bc_sum(hc1,hc2); if not bc_zero!? w then resl := w . ht1 . resl; ht1 := ev_sum(car p1,t1); p1 := cdr p1; hc1 := bc_prod(car p1,c1); p1 := cdr p1; ht2 := ev_sum(car p2,t2); p2 := cdr p2; hc2 := bc_prod(car p2,c2); p2 := cdr p2 >> >>; return if p1 then dip_ilcomb2(resl,hc2,ht2,hc1,ht1,p1,c1,t1) else dip_ilcomb2(resl,hc1,ht1,hc2,ht2,p2,c2,t2) end; procedure dip_ilcomb2(resl,hc1,ht1,hc2,ht2,p2,c2,t2); begin scalar cmp,w; while p2 and (cmp := ev_comp(ht1,ht2)) #= -1 do << resl := hc2 . ht2 . resl; ht2 := ev_sum(car p2,t2); p2 := cdr p2; hc2 := bc_prod(car p2,c2); p2 := cdr p2 >>; if p2 then << if cmp #= 1 then resl := hc2 . ht2 . hc1 . ht1 . resl else << % cmp = 0 w := bc_sum(hc1,hc2); if not bc_zero!? w then resl := w . ht1 . resl >>; while p2 do << resl := ev_sum(car p2,t2) . resl; p2 := cdr p2; resl := bc_prod(car p2,c2) . resl; p2 := cdr p2 >>; return reversip resl >>; cmp := ev_comp(ht1,ht2); if cmp #= -1 then resl := hc1 . ht1 . hc2 . ht2 . resl else if cmp #= 1 then resl := hc2 . ht2 . hc1 . ht1 . resl else << % cmp = 0 w := bc_sum(hc1,hc2); if not bc_zero!? w then resl := w . ht1 . resl >>; return reversip resl end; procedure dip_ilcomb1r(p1,c1,p2,c2,t2); % Compute p1*c1+p2*c2^t2. begin scalar hc1,ht1,hc2,ht2,cmp,resl,w; ht1 := car p1; p1 := cdr p1; hc1 := bc_prod(car p1,c1); p1 := cdr p1; ht2 := ev_sum(car p2,t2); p2 := cdr p2; hc2 := bc_prod(car p2,c2); p2 := cdr p2; while p1 and p2 do << cmp := ev_comp(ht1,ht2); % 1 = ">", -1 = "<", 0 = "=" if cmp #= 1 then << resl := hc1 . ht1 . resl; ht1 := car p1; p1 := cdr p1; hc1 := bc_prod(car p1,c1); p1 := cdr p1 >> else if cmp #= -1 then << resl := hc2 . ht2 . resl; ht2 := ev_sum(car p2,t2); p2 := cdr p2; hc2 := bc_prod(car p2,c2); p2 := cdr p2 >> else << % cmp = 0, actually add monomials w := bc_sum(hc1,hc2); if not bc_zero!? w then resl := w . ht1 . resl; ht1 := car p1; p1 := cdr p1; hc1 := bc_prod(car p1,c1); p1 := cdr p1; ht2 := ev_sum(car p2,t2); p2 := cdr p2; hc2 := bc_prod(car p2,c2); p2 := cdr p2 >> >>; return if p1 then dip_ilcomb2r(resl,hc2,ht2,hc1,ht1,p1,c1) else dip_ilcomb2(resl,hc1,ht1,hc2,ht2,p2,c2,t2) end; procedure dip_ilcomb2r(resl,hc1,ht1,hc2,ht2,p2,c2); begin scalar cmp,w; while p2 and (cmp := ev_comp(ht1,ht2)) #= -1 do << resl := hc2 . ht2 . resl; ht2 := car p2; p2 := cdr p2; hc2 := bc_prod(car p2,c2); p2 := cdr p2 >>; if p2 then << if cmp #= 1 then resl := hc2 . ht2 . hc1 . ht1 . resl else << % cmp = 0 w := bc_sum(hc1,hc2); if not bc_zero!? w then resl := w . ht1 . resl >>; while p2 do << resl := car p2 . resl; p2 := cdr p2; resl := bc_prod(car p2,c2) . resl; p2 := cdr p2 >>; return reversip resl >>; cmp := ev_comp(ht1,ht2); if cmp #= -1 then resl := hc1 . ht1 . hc2 . ht2 . resl else if cmp #= 1 then resl := hc2 . ht2 . hc1 . ht1 . resl else << % cmp = 0 w := bc_sum(hc1,hc2); if not bc_zero!? w then resl := w . ht1 . resl >>; return reversip resl end; procedure dip_comp(p1,p2); % distributive polynomial compare. [p1] and [p2] are DIP's. Returns % bool. Returns [T] if [p1] is greater than [p2] wrt. the % quasi-order induced by the current term order. begin scalar w; if null p1 then return nil; if null p2 then return T; w := dip_comp1(p1,p2); if w #= -1 then return nil; if w #= 1 then return T; return dip_comp(dip_mred p1,dip_mred p2) end; procedure dip_comp1(p1,p2); ev_comp(dip_evlmon p1,dip_evlmon p2); endmodule; % dip module td; procedure td_vars(); if !*tdusetorder then cdr global!-dipvars!* else cdr td_vars!*; procedure td_sortmode(); if !*tdusetorder then vdpsortmode!* else td_sortmode!*; procedure td_sortextension(); if !*tdusetorder then vdpsortextension!* else td_sortextension!*; procedure td_torder(u); begin scalar oldmode,oldex,oldvars,w; oldmode := td_sortmode!*; oldex := td_sortextension!*; oldvars := td_vars!*; td_vars!* := '(list); w := reval car u; if null cdr u and eqcar(w,'list) then u := cdr w else u := w . for each a in cdr u collect reval a; w := car u; u := cdr u; if eqcar(w,'list) then << td_vars!* := w; w := car u; u := cdr u >>; td_sortmode!* := w; td_sortextension!* := for each x in u join if eqcar(x,'list) then cdr x else {x}; if flagp(td_sortmode!*,'dipsortextension) and null td_sortextension!* then rederr "td_torder: term order needs additional parameter(s)"; return 'list . oldvars . oldmode . oldex end; endmodule; % td end; % of file