Artifact 079b215366bfc3127c06748511d0becb8a78525267bce1eb73af2fa7e3f307c2:
- File
r35/xmpl/specfmor.tst
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 2805) [annotate] [blame] [check-ins using] [more...]
% % More Tests for REDUCE Special Functions Package % % Winfried Neun, ZIB Berlin, February 1993 % load_package specfn; % =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= % 1. Binomial Coefficients and Stirling numbers % =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= Binomial (2,1/2); on rounded; Binomial (2.1,2); off rounded; Binomial (n,2); 1/Binomial (49,6); % for those who play Lotto in Germany. Stirling1(10,5); Stirling2(10,5); % =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= % 2. Bernoulli Polynomials % =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= BernoulliP (4,x); BernoulliP (4,1/2); % =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= % 4. Laguerre Polynomials % =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= LaguerreP(3,x); LaguerreP(2,1,x); % =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= % 5. Legendre and Jacobi Polynomials % =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= LegendreP (2,x); LegendreP (3,x); LegendreP (6,3,x); JacobiP (2,1,3/4,x); % =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= % 6. Chebychev Polynomials % =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= ChebyshevT(2,x); ChebyshevT(3,x); ChebyshevU(2,x); ChebyshevU(3,x); % =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= % 7. Hermite Polynomials % =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= HermiteP (2,x); HermiteP (3,x); % =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= % 8. Gegenbauer Polynomials % =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= GegenbauerP(2,5,x); GegenbauerP(3,2,x); % =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= % 9. Some well-known Infinite Sums % =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= off exp; sum(1/m^4,m,1,infinity); sum((-1)^m/m^4,m,1,infinity); sum(1/(2*m-1)^4,m,1,infinity); sum((-1)^m/(2*m-1)^3,m,1,infinity); on exp; sum((-1)^m/(2*m-1)^2,m,1,infinity); % =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= % 10. Euler Numbers and Polynomials % =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= Euler(6); EulerP(4,x); EulerP(4,1/2); % =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= % 11. Integral Functions % =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= on rounded; Shi(3.4); Si(3.4); Chi(3.4); Ci(3.4); Ei(Pi); erfc(2.0); Fresnel_C(3.1); Fresnel_S(3.1); off rounded; df(Si(z),z); limit(Si(x),x,infinity); limit(Fresnel_S(x),x,infinity); s_i(x); defint(cos(t)/t,t,X,INFINITY); % =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= % 12. Misc Functions % =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= defint(log(t)/(1-t),t,1,x); on rounded; dilog(3.1); off rounded; end;