File r37/packages/specfn/sfellip.red from the latest check-in


module sfellip;  % Procedures and Rules for Elliptic functions.

% Author: Lisa Temme, ZIB, October 1994

algebraic;

%ARITHMETIC GEOMETRIC MEAN

%The following procedure is the process of the Arithmetic Geometric 
%Mean.

procedure AGM_function(a0,b0,c0);

   begin scalar aN, bN, cN, aN!-1, bN!-1, alist, blist, clist;

     %Initial values.

	aN!-1 := a0;
	bN!-1 := b0;
	cN    := 20;	%To initiate while loop below.

     %Put initial values at end of list.

	alist := {a0}$
	blist := {b0}$
	clist := {c0}$

     %Loop to generate lists of aN,bN and cN starting with the Nth
     %value and ending with the initial value.
 
     %When the absolute value of cN reaches a value smaller than that 
     %of the required precision the loop exits. The value of aN=bN=AGM.

	while abs(cN) > 10^(-(Symbolic !:prec!:)) do

	   << %Calculations for the process of the AGM

		aN := (aN!-1 + bN!-1) / 2;
		bN := sqrt(aN!-1 * bN!-1);
		cN := (aN!-1 - bN!-1) / 2;

	     %Adding the next term to each of the lists.

		alist := aN.alist;
		blist := bN.blist;
		clist := cN.clist;

	     %Resetting the values in order to execute the next loop.

		aN!-1 := aN;
		bN!-1 := bN
	   >>;

     %N is the number of terms in each list (excluding the initial 
     % values) used to calculate the AGM.

	N := LENGTH(alist) - 1;

     %The following list contains all the items required in the
     %calculation of other procedures which use the AGM
     %ie. {N, AGM, {aN to a0},{bN to b0},{cN to c0}}

	return list(N ,aN, alist, blist, clist)

   end;
%######################################################################
%CALCULATING PHI
%               N


%The following procedure sucessively computes phi   ,phi   ,...,phi ,
%						 N-1    N-2        0
%from the recurrence relation:
%
%	sin(2phi    - phi ) = (c /a )sin phi
%		N-1	 N	N  N	    N
%
%and returns a list of phi  to phi . This list is then used in the
%			 0	 N
%calculation of Jacobisn, Jacobicn, Jacobidn, which in turn are used
%to calculate the remaining twelve Jacobi Functions.


procedure PHI_function(a0,b0,c0,u);

   begin scalar alist, clist,N,a_n,aN,cN,i, phi_N, phi_N!-1, phi_list;

	agm   := AGM_function(a0,b0,c0);
	alist := PART(agm,3);		 % aN to a0
	clist := PART(agm,5);		 % cN to c0
	N := PART(agm,1);
	a_n := PART(alist,1);		 % Value of the AGM.
	phi_N := (2^N)*a_n*u;
	phi_list := {phi_N}$
	i := 1;

	while i < LENGTH(alist) do

	   <<
		aN := PART(alist,i);
		cN := PART(clist,i);

		phi_N!-1 := (asin((cN/aN)*sin(phi_N)) + phi_N) / 2;
		phi_list := phi_N!-1.phi_list;
		phi_N := phi_N!-1;
		i := i+1
	   >>;

     %Returns {phi_0 to phi_N}.

	return phi_list;

   end;

%######################################################################
%JACOBI AMPLITUDE


%This computes the Amplitude of u. 

procedure Amplitude(u,m);
	asin(Jacobisn(u,m));

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

operator JacobiAmplitude;

JacobiAMrules :=

{
	JacobiAmplitude(~u,~m) => Amplitude(u,m) when lisp !*rounded
					 and numberp u and numberp m
}$

let JacobiAMrules;

%######################################################################
%JACOBI FUNCTIONS

%Increases the precision used to evaluate algebraic arguments.

symbolic procedure  Num_JACOBI (u);
% check that length u >= 3 !
 if length u < 3 then
	 rederr "illegal call to num_jacobisn" else
   begin scalar oldprec,res;
     oldprec := precision 0;
     precision max(oldprec,15);

    res :=  aeval u;
    precision oldprec;
    return res;

  end;

put('Num_Elliptic, 'psopfn, 'Num_JACOBI);

%######################################################################
%This procedure is called by Jacobisn when the on rounded switch is
%used. It evaluates the value of Jacobisn numerically.


procedure Num_Jacobisn(u,m);

   begin scalar phi0, Jsn;
	phi0 := PART(PHI_function(1,sqrt(1-m),sqrt(m),u),1);
	Jsn := sin(phi0);
	return Jsn
   end;

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
%Jacobisn definition
%===================

operator Jacobisn;
operator EllipticK!';
operator EllipticK;

%This rule list includes all the special cases of the Jacobisn
%function.

JacobiSNrules := 
{ 	
%When m=0 or 1, Change of Parameter
%----------------------------------
	Jacobisn(~u,0)   => sin u,
	Jacobisn(~u,1)   => tanh u,
	Jacobisn(~u,-~m) => Jacobisn(u,m),
%Change of argument
%------------------
	Jacobisn(~u + ~v,~m) => 
		( Jacobisn(u,m)*Jacobicn(v,m)*Jacobidn(v,m) 
		+ Jacobisn(v,m)*Jacobicn(u,m)*Jacobidn(u,m) )
		/ (1-m*((Jacobisn(u,m))^2)*((Jacobisn(v,m))^2)),
	
	Jacobisn(2*~u,~m) =>
		( 2*Jacobisn(u,m)*Jacobicn(u,m)*Jacobidn(u,m) )
		/ (1-m*((Jacobisn(u,m))^4)),

	Jacobisn(~u/2,~m) =>
		( 1- Jacobicn(u,m) ) / ( 1 + Jacobidn(u,m) ),


	Jacobisn(-~u,~m) => -Jacobisn(u,m),
	Jacobisn((~u+EllipticK(~m)),~m)   =>  Jacobicd(u,m),
	Jacobisn((~u-EllipticK(~m)),~m)   => -Jacobicd(u,m),
	Jacobisn((EllipticK(~m)-~u),~m)   =>  Jacobicd(u,m),
	Jacobisn((~u+2*EllipticK(~m)),~m) => -Jacobisn(u,m),
	Jacobisn((~u-2*EllipticK(~m)),~m) => -Jacobisn(u,m),
	Jacobisn((2*EllipticK(~m)-~u),~m) =>  Jacobisn(u,m),
	Jacobisn(~u+i*EllipticK!'(~m),~m) => (m^(-1/2))*Jacobins(u,m),

	Jacobisn((~u+2*i*EllipticK!'(~m)),~m) => Jacobisn(u,m),

	Jacobisn((~u+EllipticK(~m)+i*EllipticK!'(~m)),~m) => 
					      (m^(-1/2))*Jacobidc(u,m),

	Jacobisn((~u+2*EllipticK(~m)+2*i*EllipticK!'(~m)),~m) => 
							-Jacobisn(u,m),
%Special Arguments
%-----------------
	Jacobisn(0,~m) => 0,

	Jacobisn((1/2)*EllipticK(~m),~m) =>1/((1+((1-m)^(1/2)))^(1/2)),

	Jacobisn(EllipticK(~m),~m) => 1,

	Jacobisn((1/2)*i*EllipticK!'(~m),~m) => i*m^(-1/4),

	Jacobisn((1/2)*(EllipticK(~m)+i*EllipticK!'(~m)),~m) => 
			    (2^(-1/2))*m^(-1/4)*(((1+(m^(1/2)))^(1/2)) 
					    + i*((1-(m^(1/2)))^(1/2))),

	Jacobisn(EllipticK(~m)+(1/2)*i*EllipticK!'(~m),~m) => m^(-1/4),

	Jacobisn(i*EllipticK!'(~m),~m) => infinity,

	Jacobisn((1/2)*EllipticK(~m)+i*EllipticK!'(~m),~m) => 
					      (1-((1-m)^(1/2)))^(-1/2),

	Jacobisn(EllipticK(~m)+i*EllipticK!'(~m),~m) => m^(-1/2),


%Derivatives, Integral
%---------------------
	df(Jacobisn(~u,~m),~u)  => Jacobicn(u,m)*Jacobidn(u,m),
	df(Jacobisn(~u,~m),~m)  => (m*Jacobisn(u,m)*Jacobicn(u,m)^2
			- EllipticE(u,m)*Jacobicn(u,m)*Jacobidn(u,m)/m)
			/ (1-(m^2)) +  u*Jacobicn(u,m)*Jacobidn(u,m)/m,

	int(Jacobisn(~u,~m),~u) =>
		(m^(-1/2))*ln(Jacobidn(u,m)-(m^(1/2))*Jacobicn(u,m)),

%Calls Num_Jacobisn when the rounded switch is on.
%-------------------------------------------------
	Jacobisn(~u,~m) => Num_Elliptic(Num_Jacobisn, u, m)
			   when lisp !*rounded and numberp u 
			   and numberp m and IMPART(u) = 0,

	Jacobisn(~u,~m) => Num_Elliptic(complex_SN, u, m) 
			   when lisp !*rounded and numberp repart u 
			   and numberp impart u and numberp m 
			   and IMPART(u) neq 0

}$
let JacobiSNrules;

%......................................................................
%Evaluates Jacobisn when imaginary argument.

operator complex_SN;
SNrule :=
{

	complex_SN(i*~u,~m) => i*Num_Jacobisc(u,1-m),

	complex_SN(~x + i*~y,~m) => 
		( Num_Jacobisn(x,m)*Num_Jacobidn(y,1-m) 
		+ i*Num_Jacobicn(x,m)*Num_Jacobidn(x,m)
		   *Num_Jacobisn(y,1-m)*Num_Jacobicn(y,1-m) )
		/ (((Num_Jacobicn(y,1-m))^2)+
		   m*((Num_Jacobisn(x,m))^2)*((Num_Jacobisn(y,1-m))^2))
}$
let SNrule;

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
%This procedure is called by Jacobicn when the on rounded switch is
%used. It evaluates the value of Jacobicn numerically.

procedure Num_Jacobicn(u,m);

   begin scalar phi0, Jcn;
	phi0 := PART(PHI_function(1,sqrt(1-m),sqrt(m),u),1);
	Jcn := cos(phi0);
	return Jcn
   end;
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
%Jacobicn definition
%===================

operator Jacobicn;

%This rule list includes all the special cases of the Jacobicn
%function.

JacobiCNrules := 
{ 	
%When m=0 or 1, Change of Parameter
%----------------------------------
	Jacobicn(~u,0)   => cos u,
	Jacobicn(~u,1)   => sech u,
	Jacobicn(~u,-~m) => Jacobicn(u,m),
%Change of Argument
%------------------
	Jacobicn(~u + ~v,~m) => 
		( Jacobicn(u,m)*Jacobicn(v,m) - Jacobisn(u,m)
		   *Jacobidn(u,m)*Jacobisn(v,m)*Jacobidn(v,m) )
		/ (1 - m*((Jacobisn(u,m))^2)*((Jacobisn(v,m))^2)),

	Jacobicn(2*~u,~m) =>
		( ((Jacobicn(u,m))^2) - ((Jacobisn(u,m))^2)
		  *((Jacobidn(u,m))^2) )
		/ (1- m*((Jacobisn(u,m))^4)),

	Jacobicn(~u/2,~m) =>
		( Jacobidn(u,m) + Jacobicn(u,m) ) 
		/ ( 1 + Jacobidn(u,m) ),

	Jacobicn(-~u,~m) => Jacobicn (u,m),

	Jacobicn((~u+EllipticK(~m)),~m) =>-((1-m)^(1/2))*Jacobisd(u,m),
	Jacobicn((~u-EllipticK(~m)),~m) => ((1-m)^(1/2))*Jacobisd(u,m),
	Jacobicn((EllipticK(~m)-~u),~m) => ((1-m)^(1/2))*Jacobisd(u,m),
	Jacobicn((~u+2*EllipticK(~m)),~m) => -Jacobicn(u,m),
	Jacobicn((~u-2*EllipticK(~m)),~m) => -Jacobicn(u,m),
	Jacobicn((2*EllipticK(~m)-~u),~m) => -Jacobicn(u,m),
	Jacobicn((~u+i*EllipticK!'(~m)),~m) =>
 					   -i*(m^(-1/2))*Jacobids(u,m),

	Jacobicn((~u+2*i*EllipticK!'(~m)),~m) => -Jacobicn(u,m),

	Jacobicn((~u+EllipticK(~m)+i*EllipticK!'(~m)),~m) => 
			     -i*((1-m)^(1/2))*(m^(-1/2))*Jacobinc(u,m),

	Jacobicn((~u+2*EllipticK(~m)+2*i*EllipticK!'(~m)),~m) => 
							 Jacobicn(u,m),
%Special Arguments
%-----------------
	Jacobicn(0,~m) => 1,

	Jacobicn((1/2)*EllipticK(~m),~m) => 
				 ((1-m)^(1/4))/(1+((1-m)^(1/2)))^(1/2),

	Jacobicn(EllipticK(~m),~m) => 0,

	Jacobicn((1/2)*i*EllipticK!'(~m),~m) => 
				       ((1+(m^(1/2)))^(1/2))/(m^(1/4)),

	Jacobicn((1/2)*(EllipticK(~m)+i*EllipticK!'(~m)),~m) => 
					   (((1-m)/(4*m))^(1/4))*(1-i),

	Jacobicn(EllipticK(~m)+(1/2)*i*EllipticK!'(~m),~m) => 
				  -i*(((1-(m^(1/2)))/(m^(1/2))))^(1/2),

	Jacobicn(i*EllipticK!'(~m),~m) => infinity,

	Jacobicn((1/2)*EllipticK(~m)+i*EllipticK!'(~m),~m) => 
			  -i*((((1-m)^(1/2))/(1-((1-m)^(1/2))))^(1/2)),

	Jacobicn(EllipticK(~m)+i*EllipticK!'(~m),~m) =>
						  -i*(((1-m)/m)^(1/2)),
%Derivatives, Integral
%---------------------
	df(Jacobicn(~u,~m),~u)  => -Jacobisn(u,m)*Jacobidn(u,m),
	df(Jacobicn(~u,~m),~m)  => (-m*(Jacobisn(u,m)^2)*Jacobicn(u,m)
				   + EllipticE(u,m)*Jacobisn(u,m)
				     *Jacobidn(u,m)/m)/(1-(m^2))
				   - u*Jacobisn(u,m)*Jacobidn(u,m)/m,

	int(Jacobicn(~u,~m),~u) => (m^(-1/2))*acos(Jacobidn(u,m)),

%Calls Num_Jacobicn when rounded switch is on.
%---------------------------------------------
	Jacobicn(~u,~m) => Num_Elliptic(Num_Jacobicn, u, m)
			   when lisp !*rounded and numberp u 
			   and numberp m and IMPART(u) = 0,

	Jacobicn(~u,~m) => Num_Elliptic(complex_CN, u, m) 
			   when lisp !*rounded and numberp repart u 
			   and numberp impart u and numberp m 
			   and IMPART(u) neq 0
}$
let JacobiCNrules;

%......................................................................
%Evaluates Jacobicn when imaginary argument.

operator complex_CN;
CNrule :=
{

	complex_CN(i*~u,~m) => Num_Jacobinc(u,1-m),

	complex_CN(~x + i*~y,~m) =>

		( Num_Jacobicn(x,m)*Num_Jacobicn(y,1-m) 
		- i*Num_Jacobisn(x,m)*Num_Jacobidn(x,m)
		   *Num_Jacobisn(y,1-m)*Num_Jacobidn(y,1-m) )
		/ (((Num_Jacobicn(y,1-m))^2)+ 
		   m*((Num_Jacobisn(x,m))^2)*((Num_Jacobisn(y,1-m))^2))
}$
let CNrule;

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
%This procedure is called by Jacobidn when the on rounded switch is
%used. It evaluates the value of Jacobidn numerically.

procedure Num_Jacobidn(u,m);
   begin scalar PHI, phi0,  phi1, numer, denom, Jdn;
	PHI  := PHI_function(1,sqrt(1-m),sqrt(m),u);
	phi0 := PART(PHI,1);
	phi1 := PART(PHI,2);
	numer := cos(phi0);
	denom := cos(phi1 - phi0);

	if denom < 10^(-(Symbolic !:prec!:))
	then  Jdn := otherDN(u,m)
	else  Jdn := numer/denom;
	return Jdn
   end;

procedure otherDN(u,m);
   begin scalar mu, v, dn;
	mu := ((1-((1-m)^(1/2))) / (1+((1-m)^(1/2))))^2;
	v  := u / (1+(mu^(1/2)));

	dn := ((approx(v,mu))^2 - (1-(mu^(1/2))))

		/ ((1+(mu^(1/2))) - (approx(v,mu))^2);
	return dn
   end;


procedure approx(u,m);
   begin scalar near;
	near := 1 - (1/2)*m*(sin(u))^2;
	return near
   end;

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
%Jacobidn definition
%===================

operator Jacobidn;

%This rule list includes all the special cases of the Jacobidn
%function.

JacobiDNrules := 
{ 	
%When m=0 or 1, Change of Parameter
%----------------------------------
	Jacobidn(~u,0)   => 1,
	Jacobidn(~u,1)   => sech u,
	Jacobidn(~u,-~m) => Jacobidn(u,m),
%Change of Argument
%------------------
	Jacobidn(~u + ~v,~m) => 
		( Jacobidn(u,m)*Jacobidn(v,m) - m*Jacobisn(u,m)
		   *Jacobicn(u,m)*Jacobisn(v,m)*Jacobicn(v,m) )
		/ (1 - m*((Jacobisn(u,m))^2)*((Jacobisn(v,m))^2)),

	Jacobidn(2*~u,~m) =>
		(  ((Jacobidn(u,m))^2) - m*((Jacobisn(u,m))^2)
		  *((Jacobicn(u,m))^2) )
		/ (1- m*((Jacobisn(u,m))^4)),

	Jacobidn(~u/2,~m) =>
		( (1-m) + Jacobidn(u,m) + m*Jacobicn(u,m))   
		/ ( 1 + Jacobidn(u,m) ),

	Jacobidn(-~u,~m) => Jacobidn(u,m),

	Jacobidn((~u+EllipticK(~m)),~m) => ((1-m)^(1/2))*Jacobind(u,m),
	Jacobidn((~u-EllipticK(~m)),~m) => ((1-m)^(1/2))*Jacobind(u,m),
	Jacobidn((EllipticK(~m)-~u),~m) => ((1-m)^(1/2))*Jacobind(u,m),
	Jacobidn((~u+2*EllipticK(~m)),~m) => Jacobidn(u,m),
	Jacobidn((~u-2*EllipticK(~m)),~m) => Jacobidn(u,m),
	Jacobidn((2*EllipticK(~m)-~u),~m) => Jacobidn(u,m),
	Jacobidn((~u+i*EllipticK!'(~m)),~m)   => -i*Jacobics(u,m),
	Jacobidn((~u+2*i*EllipticK!'(~m)),~m) => -Jacobidn(u,m),

	Jacobidn((~u+EllipticK(~m)+i*EllipticK!'(~m)),~m) => 
					 i*((1-m)^(1/2))*Jacobisc(u,m),

	Jacobidn((~u+2*EllipticK(~m)+2*i*EllipticK!'(~m)),~m) => 
							-Jacobidn(u,m),
%Special Arguments
%-----------------
	Jacobidn(0,~m) => 1,

	Jacobidn((1/2)*EllipticK(~m),~m) => (1-m)^(1/4),

	Jacobidn(EllipticK(~m),~m) => (1-m)^(1/2),

	Jacobidn((1/2)*i*EllipticK!'(~m),~m) =>   (1+(m^(1/2)))^(1/2),

	Jacobidn((1/2)*(EllipticK(~m)+i*EllipticK!'(~m)),~m) => 
			 (((1-m)/4)^(1/4))*(((1+((1-m)^(1/2)))^(1/2)) 
					- i*((1-((1-m)^(1/2)))^(1/2))),

	Jacobidn(EllipticK(~m)+(1/2)*i*EllipticK!'(~m),~m) => 
						   (1-(m^(1/2)))^(1/2),

	Jacobidn(i*EllipticK!'(~m),~m) => infinity,

	Jacobidn((1/2)*EllipticK(~m)+i*EllipticK!'(~m),~m) => 
						      -i*((1-m)^(1/4)),

	Jacobidn(EllipticK(~m)+i*EllipticK!'(~m),~m) => 0,

%Derivatives, Intergal
%---------------------
	df(Jacobidn(~u,~m),~u)  => -m*Jacobisn(u,m)*Jacobicn(u,m),
	df(Jacobidn(~u,~m),~m)  => m*(-(Jacobisn(u,m)^2)*Jacobidn(u,m)
				   + EllipticE(u,m)*Jacobisn(u,m)
				     *Jacobicn(u,m))/(1-(m^2)) 
				   - m*u*Jacobisn(u,m)*Jacobicn(u,m),

	int(Jacobidn(~u,~m),~u) => asin(Jacobisn(u,m)),

%Calls Num_Jacobidn when rounded switch is on.
%---------------------------------------------
	Jacobidn(~u,~m) => Num_Elliptic(Num_Jacobidn, u, m)
			   when lisp !*rounded and numberp u 
			   and numberp m and IMPART(u) = 0,

	Jacobidn(~u,~m) => Num_Elliptic(complex_DN, u, m) 
			   when lisp !*rounded and numberp repart u 
			   and numberp impart u and numberp m 
			   and IMPART(u) neq 0
}$
let JacobiDNrules;

%......................................................................
%Evaluates Jacobidn when imaginary argument.

operator complex_DN;
DNrule :=
{	complex_DN(i*~u,~m) => Num_Jacobidc(u,1-m),

	complex_DN(~x + i*~y,~m) =>

	( Num_Jacobidn(x,m)*Num_Jacobicn(y,1-m)*Num_Jacobidn(y,1-m)
	- i*m*Num_Jacobisn(x,m)*Num_Jacobicn(x,m)*Num_Jacobisn(y,1-m) )
	/ ( ((Num_Jacobicn(y,1-m))^2) + m*((Num_Jacobisn(x,m))^2)
					 *((Num_Jacobisn(y,1-m))^2) )
}$
let DNrule;

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
%This procedure is called by Jacobicd when the on rounded switch is
%used. It evaluates the value of Jacobicd numerically.

procedure Num_Jacobicd(u,m);

	Num_Jacobicn(u,m) / Num_Jacobidn(u,m);


%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
%Jacobicd definition
%===================

operator Jacobicd;

%This rule list includes all the special cases of the Jacobicd
%function.

JacobiCDrules := 
{
%When m=0 or 1, Change of Parameter
%----------------------------------
	Jacobicd(~u,0)   => cos u,
	Jacobicd(~u,1)   => 1,
	Jacobicd(~u,-~m) => Jacobicd(u,m),
%Change of Argument
%------------------
	Jacobicd(-~u,~m)   => Jacobicd(u,m),
	Jacobicd((~u+EllipticK(~m)),~m)   => -Jacobisn(u,m),
	Jacobicd((~u-EllipticK(~m)),~m)   =>  Jacobisn(u,m),
	Jacobicd((EllipticK(~m)-~u),~m)   =>  Jacobisn(u,m),
	Jacobicd((~u+2*EllipticK(~m)),~m) => -Jacobicd(u,m),
	Jacobicd((~u-2*EllipticK(~m)),~m) => -Jacobicd(u,m),
	Jacobicd((2*EllipticK(~m)-~u),~m) => -Jacobicd(u,m),
	Jacobicd((~u+i*EllipticK!'(~m)),~m) =>
					      (m^(-1/2))*Jacobidc(u,m),

	Jacobicd((~u+2*i*EllipticK!'(~m)),~m) => Jacobicd(u,m),

	Jacobicd((~u+EllipticK(~m)+i*EllipticK!'(~m)),~m) => 
					     -(m^(-1/2))*Jacobins(u,m),

	Jacobicd((~u+2*EllipticK(~m)+2*i*EllipticK!'(~m)),~m) => 
							-Jacobicd(u,m),
%Special Arguments
%-----------------
	Jacobicd(0,~m) => 1,

	Jacobicd((1/2)*EllipticK(~m),~m) => 1 /(1+((1-m)^(1/2)))^(1/2),

	Jacobicd(EllipticK(~m),~m) => 0,

	Jacobicd((1/2)*i*EllipticK!'(~m),~m) => 1/(m^(1/4)),

	Jacobicd((1/2)*(EllipticK(~m)+i*EllipticK!'(~m)),~m) =>
			   (1-i)/((m^(1/4))*(((1+((1-m)^(1/2)))^(1/2))
					-i*((1-((1-m)^(1/2)))^(1/2)))),

	Jacobicd(EllipticK(~m)+(1/2)*i*EllipticK!'(~m),~m) => 
							  -i/(m^(1/4)),

	Jacobicd(i*EllipticK!'(~m),~m) =>
					Jacobicn(i*EllipticK!'(~m),~m)
				      / Jacobidn(i*EllipticK!'(~m),~m),

	Jacobicd((1/2)*EllipticK(~m)+i*EllipticK!'(~m),~m) =>
					   1/((1-((1-m)^(1/2)))^(1/2)),

	Jacobicd(EllipticK(~m)+i*EllipticK!'(~m),~m) => infinity,

%Derivatives,Integral 
%--------------------
	df(Jacobicd(~u,~m),~u) => -(1 - m)*Jacobisd(u,m)*Jacobind(u,m),
	df(Jacobicd(~u,~m),~m) => 
				( Jacobidn(u,m)*df(Jacobicn(u,m),m) 
				- Jacobicn(u,m)*df(Jacobidn(u,m),m))
				/ ((Jacobidn(u,m))^2),

	int(Jacobicd(~u,~m),~u) => 
		m^(-1/2)*ln(Jacobind(u,m) + (m^(1/2))*Jacobisd(u,m)),

%Calls Num_Jacobicd when rounded switch is on.
%---------------------------------------------
	Jacobicd(~u,~m) => Num_Elliptic(Num_Jacobicd, u, m)
			   when lisp !*rounded and numberp u 
			   and numberp m 
}$
let JacobiCDrules;

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
%This procedure is called by Jacobisd when the on rounded switch is
%used. It evaluates the value of Jacobisd numerically.

procedure Num_Jacobisd(u,m);

   Num_Jacobisn(u,m) / Num_Jacobidn(u,m);

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
%Jacobisd definition
%===================

operator Jacobisd;

%This rule list includes all the special cases of the Jacobisd
%function.

JacobiSDrules := 
{
%When m=0 or 1, Change of Parameter
%----------------------------------
	Jacobisd(~u,0)   => sin u,
	Jacobisd(~u,1)   => sinh u,
	Jacobisd(~u,-~m) => Jacobisd(u,m),
%Change of Argument
%------------------
	Jacobisd(-~u,~m)   => -Jacobisd(u,m),

	Jacobisd((~u+EllipticK(~m)),~m) =>((1-m)^(-1/2))*Jacobicn(u,m),
	Jacobisd((~u-EllipticK(~m)),~m) => -((1-m)^(-1/2))
							*Jacobicn(u,m),

	Jacobisd((EllipticK(~m)-~u),~m) =>((1-m)^(-1/2))*Jacobicn(u,m),

	Jacobisd((~u+2*EllipticK(~m)),~m) => -Jacobisd(u,m),
	Jacobisd((~u-2*EllipticK(~m)),~m) => -Jacobisd(u,m),
	Jacobisd((2*EllipticK(~m)-~u),~m) =>  Jacobisd(u,m),

	Jacobisd((~u+i*EllipticK!'(~m)),~m) =>
 					    i*(m^(-1/2))*Jacobinc(u,m),

	Jacobisd((~u+2*i*EllipticK!'(~m)),~m) => -Jacobisd(u,m),

	Jacobisd((~u+EllipticK(~m)+i*EllipticK!'(~m)),~m) => 
			  -i*((1-m)^(-1/2))*(m^(-1/2))*Jacobids(u,m),

	Jacobisd((~u+2*EllipticK(~m)+2*i*EllipticK!'(~m)),~m) => 
							 Jacobisd(u,m),
%Special Arguments
%-----------------
	Jacobisd(0,~m) => 0,

	Jacobisd((1/2)*EllipticK(~m),~m) => 
			 1 / (((1+((1-m)^(1/2)))^(1/2))*((1-m)^(1/4))),

	Jacobisd(EllipticK(~m),~m) => 1/((1-m)^(1/2)),

	Jacobisd((1/2)*i*EllipticK!'(~m),~m) => 
				    i*(m^(-1/4))/((1+(m^(1/2)))^(1/2)),

	Jacobisd((1/2)*(EllipticK(~m)+i*EllipticK!'(~m)),~m) =>

		Jacobisn((1/2)*(EllipticK(~m)+i*EllipticK!'(~m)),~m)
		/ Jacobidn((1/2)*(EllipticK(~m)+i*EllipticK!'(~m)),~m),

	Jacobisd(EllipticK(~m)+(1/2)*i*EllipticK!'(~m),~m) =>
					(m^(-1/4))/(1-(m^(1/2))^(1/2)),

	Jacobisd(i*EllipticK!'(~m),~m) => 
					Jacobisn(i*EllipticK!'(~m),~m)
				      / Jacobidn(i*EllipticK!'(~m),~m),

	Jacobisd((1/2)*EllipticK(~m)+i*EllipticK!'(~m),~m) =>
			 ((1-((1-m)^(1/2)))^(-1/2))/(-i*((1-m)^(1/4))),

	Jacobisd(EllipticK(~m)+i*EllipticK!'(~m),~m) => infinity,

%Derivatives, Integral
%---------------------
	df(Jacobisd(~u,~m),~u) => Jacobicd(u,m)*Jacobind(u,m),
	df(Jacobisd(~u,~m),~m) => 
				( Jacobidn(u,m)*df(Jacobisn(u,m),m)
				- Jacobisn(u,m)*df(Jacobidn(u,m),m))
				/ ((Jacobidn(u,m))^2),

	int(Jacobisd(~u,~m),~u) => 
		   (m*(1-m))^(-1/2)*asin(-(m^(1/2))*(Jacobicd(u,m))),

%Calls Num_Jacobisd when rounded switch is on.
%---------------------------------------------
	Jacobisd(~u,~m) => Num_Elliptic(Num_Jacobisd, u, m)
			   when lisp !*rounded and numberp u 
			   and numberp m
}$
let JacobiSDrules;

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
%This procedure is called by Jacobind when the on rounded switch is
%used. It evaluates the value of Jacobind numerically.

procedure Num_Jacobind(u,m);

	1 / Num_Jacobidn(u,m);

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
%Jacobind definition
%===================

operator Jacobind;

%This rule list includes all the special cases of the Jacobind
%function.

JacobiNDrules := 
{
%When m=0 or 1, Change of Parameter
%----------------------------------
	Jacobind(~u,0)   => 1,
	Jacobind(~u,1)   => cosh u,
	Jacobind(~u,-~m) => Jacobind(u,m),
%Change of Argument
%------------------
	Jacobind(-~u,~m)   => Jacobind(u,m),

	Jacobind((~u+EllipticK(~m)),~m) =>((1-m)^(-1/2))*Jacobidn(u,m),
	Jacobind((~u-EllipticK(~m)),~m) =>((1-m)^(-1/2))*Jacobidn(u,m),
	Jacobind((EllipticK(~m)-~u),~m) =>((1-m)^(-1/2))*Jacobidn(u,m),

	Jacobind((~u+2*EllipticK(~m)),~m) => Jacobind(u,m),
	Jacobind((~u-2*EllipticK(~m)),~m) => Jacobind(u,m),
	Jacobind((2*EllipticK(~m)-~u),~m) => Jacobind(u,m),

	Jacobind((~u+i*EllipticK!'(~m)),~m)   => i*Jacobisc(u,m),
	Jacobind((~u+2*i*EllipticK!'(~m)),~m) => -Jacobind(u,m),

	Jacobind((~u+EllipticK(~m)+i*EllipticK!'(~m)),~m) => 
				       -i*((1-m)^(-1/2))*Jacobics(u,m),

	Jacobind((~u+2*EllipticK(~m)+2*i*EllipticK!'(~m)),~m) => 
							-Jacobind(u,m),
%Special Arguments
%-----------------
	Jacobind(0,~m) => 1,

	Jacobind((1/2)*EllipticK(~m),~m) => 1 / ((1-m)^(1/4)),

	Jacobind(EllipticK(~m),~m) => 1 / ((1-m)^(1/2)),

	Jacobind((1/2)*i*EllipticK!'(~m),~m) => 
					       1/((1+(m^(1/2)))^(1/2)),

	Jacobind((1/2)*(EllipticK(~m)+i*EllipticK!'(~m)),~m) =>

		1/Jacobidn((1/2)*(EllipticK(~m)+i*EllipticK!'(~m)),~m),

	Jacobind(EllipticK(~m)+(1/2)*i*EllipticK!'(~m),~m) =>
					       1/((1-(m^(1/2)))^(1/2)),

	Jacobind(i*EllipticK!'(~m),~m) =>
				    1 / Jacobidn(i*EllipticK!'(~m),~m),

	Jacobind((1/2)*EllipticK(~m)+i*EllipticK!'(~m),~m) => 
						1 / (-i*((1-m)^(1/4))),

	Jacobind(EllipticK(~m)+i*EllipticK!'(~m),~m) => infinity,

%Derivatives, Integral
%---------------------
	df(Jacobind(~u,~m),~u) => m*Jacobisd(u,m)*Jacobicd(u,m),
	df(Jacobind(~u,~m),~m) => 
			    -(df(Jacobidn(u,m),m))/((Jacobidn(u,m))^2),

	int(Jacobind(~u,~m),~u) => (1-m)^(-1/2)*(acos(Jacobicd(u,m))),

%Calls Num_Jacobind when rounded switch is on.
%---------------------------------------------
	Jacobind(~u,~m) => Num_Elliptic(Num_Jacobind, u, m)
			   when lisp !*rounded and numberp u 
			   and numberp m 
}$
let JacobiNDrules;

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
%This procedure is called by Jacobidc when the on rounded switch is
%used. It evaluates the value of Jacobidc numerically.

procedure Num_Jacobidc(u,m);

	Num_Jacobidn(u,m) / Num_Jacobicn(u,m);

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
%Jacobidc definition
%===================

operator Jacobidc;

%This rule list includes all the special cases of the Jacobidc
%function.

JacobiDCrules := 
{
%When m=0 or 1, Change of Parameter
%----------------------------------
	Jacobidc(~u,0)   => sec u,
	Jacobidc(~u,1)   => 1,
	Jacobidc(~u,-~m) => Jacobidc(u,m),
%Change of Argument
%------------------
	Jacobidc(-~u,~m)   => Jacobidc(u,m),

	Jacobidc((~u+EllipticK(~m)),~m) => -Jacobins(u,m),
	Jacobidc((~u-EllipticK(~m)),~m) =>  Jacobidns(u,m),
	Jacobidc((EllipticK(~m)-~u),~m) =>  Jacobins(u,m),
	Jacobidc((~u+2*EllipticK(~m)),~m)   => -Jacobidc(u,m),
	Jacobidc((~u-2*EllipticK(~m)),~m)   => -Jacobidc(u,m),
	Jacobidc((2*EllipticK(~m)-~u),~m)   => -Jacobidc(u,m),
	Jacobidc((~u+i*EllipticK!'(~m)),~m) => (m^(1/2))*Jacobicd(u,m),
	Jacobidc((~u+2*i*EllipticK!'(~m)),~m) => Jacobidc(u,m),

	Jacobidc((~u+EllipticK(~m)+i*EllipticK!'(~m)),~m) => 
					       (m^(1/2))*Jacobisn(u,m),

	Jacobidc((~u+2*EllipticK(~m)+2*i*EllipticK!'(~m)),~m) => 
							-Jacobidc(u,m),
%Special Arguments
%-----------------
	Jacobidc(0,~m) => 1,

	Jacobidc((1/2)*EllipticK(~m),~m) => (1+((1-m)^(1/2)))^(1/2),

	Jacobidc(EllipticK(~m),~m) => infinity,

	Jacobidc((1/2)*i*EllipticK!'(~m),~m) => m^(1/4),

	Jacobidc((1/2)*(EllipticK(~m)+i*EllipticK!'(~m)),~m) =>
		Jacobidn((1/2)*(EllipticK(~m)+i*EllipticK!'(~m)),~m)
		/ Jacobicn((1/2)*(EllipticK(~m)+i*EllipticK!'(~m)),~m),

	Jacobidc(EllipticK(~m)+(1/2)*i*EllipticK!'(~m),~m) =>
							   i*(m^(1/4)),

	Jacobidc(i*EllipticK!'(~m),~m) =>
					Jacobidn(i*EllipticK!'(~m),~m)
				      / Jacobicn(i*EllipticK!'(~m),~m),

	Jacobidc((1/2)*EllipticK(~m)+i*EllipticK!'(~m),~m) =>
					       (1-((1-m)^(1/2)))^(1/2),

	Jacobidc(EllipticK(~m)+i*EllipticK!'(~m),~m) => 0,

%Derivatives, Integral
%---------------------
	df(Jacobidc(~u,~m),~u) => (1-m)*Jacobisc(u,m)*Jacobinc(u,m),
	df(Jacobidc(~u,~m),~m) => 
				(Jacobicn(u,m)*df(Jacobidn(u,m),m)
				- Jacobidn(u,m)*df(Jacobicn(u,m),m))
				/ ((Jacobicn(u,m))^2),

	int(Jacobidc(~u,~m),~u) => ln(Jacobinc(u,m) + Jacobisc(u,m)),

%Calls Num_Jacobidc when rounded switch is on.
%---------------------------------------------
	Jacobidc(~u,~m) => Num_Elliptic(Num_Jacobidc, u, m)
			   when lisp !*rounded and numberp u 
			   and numberp m
}$
let JacobiDCrules;

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
%This procedure is called by Jacobinc when the on rounded switch is
%used. It evaluates the value of Jacobinc numerically.

procedure Num_Jacobinc(u,m);

	1 / Num_Jacobicn(u,m);

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
%Jacobinc definition
%===================

operator Jacobinc;

%This rule list includes all the special cases of the Jacobinc
%function.

JacobiNCrules := 
{
%When m=0 or 1, Change of Parameter
%----------------------------------
	Jacobinc(~u,0)   => sec u,
	Jacobinc(~u,1)   => cosh u,
	Jacobinc(~u,-~m) => Jacobinc(u,m),
%Change of Argument
%------------------
	Jacobinc(-~u,~m)   => Jacobinc(u,m),

	Jacobinc((~u+EllipticK(~m)),~m) => -((1-m)^(-1/2))
							*Jacobids(u,m),

	Jacobinc((~u-EllipticK(~m)),~m) =>((1-m)^(-1/2))*Jacobids(u,m),
	Jacobinc((EllipticK(~m)-~u),~m) =>((1-m)^(-1/2))*Jacobids(u,m),

	Jacobinc((~u+2*EllipticK(~m)),~m) => -Jacobinc(u,m),
	Jacobinc((~u-2*EllipticK(~m)),~m) => -Jacobinc(u,m),
	Jacobinc((2*EllipticK(~m)-~u),~m) => -Jacobinc(u,m),
	Jacobinc((~u+i*EllipticK!'(~m)),~m) =>
 					    i*(m^(1/2))*Jacobisd(u,m),

	Jacobinc((~u+2*i*EllipticK!'(~m)),~m) => -Jacobinc(u,m),

	Jacobinc((~u+EllipticK(~m)+i*EllipticK!'(~m)),~m) => 
			    i*((1-m)^(-1/2))*(m^(1/2))*Jacobicn(u,m),

	Jacobinc((~u+2*EllipticK(~m)+2*i*EllipticK!'(~m)),~m) => 
							 Jacobinc(u,m),
%Special Arguments
%-----------------
	Jacobinc(0,~m) => 1,

	Jacobinc((1/2)*EllipticK(~m),~m) => ((1+((1-m)^(1/2)))^(1/2))
							/((1-m)^(1/4)),

	Jacobinc(EllipticK(~m),~m) => infinity,

	Jacobinc((1/2)*i*EllipticK!'(~m),~m) => 
				       (m^(1/4))/((1+(m^(1/2)))^(1/2)),

	Jacobinc((1/2)*(EllipticK(~m)+i*EllipticK!'(~m)),~m) =>
					     ((4*m/(1-m))^(1/4))/(1-i),

	Jacobinc(EllipticK(~m)+(1/2)*i*EllipticK!'(~m),~m) =>
		1 / Jacobicn(EllipticK(~m)+(1/2)*i*EllipticK!'(~m),~m),

	Jacobinc(i*EllipticK!'(~m),~m) =>
				    1 / Jacobicn(i*EllipticK!'(~m),~m),

	Jacobinc((1/2)*EllipticK(~m)+i*EllipticK!'(~m),~m) =>
		1 / Jacobicn((1/2)*EllipticK(~m)+i*EllipticK!'(~m),~m),

	Jacobinc(EllipticK(~m)+i*EllipticK!'(~m),~m) => 
						   i*((m/(1-m))^(1/2)),
%Derivatives, Integral
%---------------------
	df(Jacobinc(~u,~m),~u) => Jacobisc(u,m)*Jacobidc(u,m),
	df(Jacobinc(~u,~m),~m) => 
			    -(df(Jacobicn(u,m),m))/((Jacobicn(u,m))^2),

	int(Jacobinc(~u,~m),~u) =>

	 ((1-m)^(-1/2))*ln(Jacobidc(u,m)+((1-m)^(1/2))*Jacobisc(u,m)), 

%Calls Num_Jacobinc when rounded switch is on.
%---------------------------------------------
	Jacobinc(~u,~m) => Num_Elliptic(Num_Jacobinc, u, m)
			   when lisp !*rounded and numberp u 
			   and numberp m
}$
let JacobiNCrules;

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
%This procedure is called by Jacobisc when the on rounded switch is
%used. It evaluates the value of Jacobisc numerically.

procedure Num_Jacobisc(u,m);

	Num_Jacobisn(u,m) / Num_Jacobicn(u,m);

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
%Jacobisc definition
%===================

operator Jacobisc;

%This rule list includes all the special cases of the Jacobisc
%function.

JacobiSCrules := 
{
%When m=0 or 1, Change of Parameter
%----------------------------------
	Jacobisc(~u,0)   => tan u,
	Jacobisc(~u,1)   => sinh u,
	Jacobisc(~u,-~m) => Jacobisc(u,m),
%Change of Argument
%------------------
	Jacobisc(-~u,~m)   => -Jacobisc(u,m),

	Jacobisc((~u+EllipticK(~m)),~m) => -((1-m)^(-1/2))
							*Jacobics(u,m),

	Jacobisc((~u-EllipticK(~m)),~m) => -((1-m)^(-1/2))
							*Jacobics(u,m),

	Jacobisc((EllipticK(~m)-~u),~m) =>((1-m)^(-1/2))*Jacobics(u,m),

	Jacobisc((~u+2*EllipticK(~m)),~m) =>  Jacobisc(u,m),
	Jacobisc((~u-2*EllipticK(~m)),~m) =>  Jacobisc(u,m),
	Jacobisc((2*EllipticK(~m)-~u),~m) => -Jacobisc(u,m),
	Jacobisc((~u+i*EllipticK!'(~m)),~m)   =>i*Jacobind(u,m),
	Jacobisc((~u+2*i*EllipticK!'(~m)),~m) => -Jacobisc(u,m),

	Jacobisc((~u+EllipticK(~m)+i*EllipticK!'(~m)),~m) => 
					i*((1-m)^(-1/2))*Jacobidn(u,m),

	Jacobisc((~u+2*EllipticK(~m)+2*i*EllipticK!'(~m)),~m) => 
							-Jacobisc(u,m),
%Special Arguments
%-----------------
	Jacobisc(0,~m) => 0,

	Jacobisc((1/2)*EllipticK(~m),~m) => 1 / ((1-m)^(1/4)),

	Jacobisc(EllipticK(~m),~m) => infinity,

	Jacobisc((1/2)*i*EllipticK!'(~m),~m) => 
					       i/((1+(m^(1/2)))^(1/2)),

	Jacobisc((1/2)*(EllipticK(~m)+i*EllipticK!'(~m)),~m) =>

		Jacobisn((1/2)*(EllipticK(~m)+i*EllipticK!'(~m)),~m)
		/ Jacobicn((1/2)*(EllipticK(~m)+i*EllipticK!'(~m)),~m),

	Jacobisc(EllipticK(~m)+(1/2)*i*EllipticK!'(~m),~m) =>
					       i/((1-(m^(1/2)))^(1/2)),

	Jacobisc(i*EllipticK!'(~m),~m) =>
				      Jacobisn(i*EllipticK!'(~m),~m)
				      / Jacobicn(i*EllipticK!'(~m),~m),

	Jacobisc((1/2)*EllipticK(~m)+i*EllipticK!'(~m),~m) =>

		  Jacobisn((1/2)*EllipticK(~m)+i*EllipticK!'(~m),~m)
		  / Jacobicn((1/2)*EllipticK(~m)+i*EllipticK!'(~m),~m),

	Jacobisc(EllipticK(~m)+i*EllipticK!'(~m),~m) =>i/((1-m)^(1/2)),


%Derivatives, Integral
%---------------------
	df(Jacobisc(~u,~m),~u) => Jacobidc(u,m)*Jacobinc(u,m),
	df(Jacobisc(~u,~m),~m) => 
				( Jacobicn(u,m)*df(Jacobisn(u,m),m)
				- Jacobisn(u,m)*df(Jacobicn(u,m),m))
				/((Jacobicn(u,m))^2),

	int(Jacobisc(~u,~m),u) =>
	
	  ((1-m)^(-1/2))*ln(Jacobidc(u,m)+((1-m)^(1/2))*Jacobinc(u,m)),

%Calls Num_Jacobisc when rounded switch is on.
%---------------------------------------------
	Jacobisc(~u,~m) => Num_Elliptic(Num_Jacobisc, u, m)
			   when lisp !*rounded and numberp u 
			   and numberp m
}$
let JacobiSCrules;

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
%This procedure is called by Jacobins when the on rounded switch is
%used. It evaluates the value of Jacobins numerically.

procedure Num_Jacobins(u,m);

	1 / Num_Jacobisn(u,m);

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
%Jacobins definition
%===================

operator Jacobins;

%This rule list includes all the special cases of the Jacobins
%function.

JacobiNSrules := 
{
%When m=0 or 1, Change of Parameter
%----------------------------------
	Jacobins(~u,0)   => csc u,
	Jacobins(~u,1)   => coth u,
	Jacobins(~u,-~m) => Jacobins(u,m),
%Change of Argument
%------------------
	Jacobins(-~u,~m)   => -Jacobins(u,m),

	Jacobins((~u+EllipticK(~m)),~m)   =>  Jacobidc(u,m),
	Jacobins((~u-EllipticK(~m)),~m)   => -Jacobidc(u,m),
	Jacobins((EllipticK(~m)-~u),~m)   =>  Jacobidc(u,m),
	Jacobins((~u+2*EllipticK(~m)),~m) => -Jacobins(u,m),
	Jacobins((~u-2*EllipticK(~m)),~m) => -Jacobins(u,m),
	Jacobins((2*EllipticK(~m)-~u),~m) =>  Jacobins(u,m),
	Jacobins((~u+i*EllipticK!'(~m)),~m) => (m^(1/2))*Jacobisn(u,m),
	Jacobins((~u+2*i*EllipticK!'(~m)),~m) => Jacobins(u,m),
	Jacobins((~u+EllipticK(~m)+i*EllipticK!'(~m)),~m) => 
					       (m^(1/2))*Jacobicd(u,m),

	Jacobins((~u+2*EllipticK(~m)+2*i*EllipticK!'(~m)),~m) => 
							-Jacobins(u,m),
%Special Arguments
%-----------------
	Jacobins(0,~m) => infinity,

	Jacobins((1/2)*EllipticK(~m),~m) => (1+((1-m)^(1/2)))^(1/2),

	Jacobins(EllipticK(~m),~m) => 1,

	Jacobins((1/2)*i*EllipticK!'(~m),~m) => -i*(m^(1/4)),

	Jacobins((1/2)*(EllipticK(~m)+i*EllipticK!'(~m)),~m) =>

		1/Jacobisn((1/2)*(EllipticK(~m)+i*EllipticK!'(~m)),~m),

	Jacobins(EllipticK(~m)+(1/2)*i*EllipticK!'(~m),~m) =>(m^(1/4)),

	Jacobins(i*EllipticK!'(~m),~m) => 

				      1/Jacobisn(i*EllipticK!'(~m),~m),

	Jacobins((1/2)*EllipticK(~m)+i*EllipticK!'(~m),~m) =>

					       (1-((1-m)^(1/2)))^(1/2),

	Jacobins(EllipticK(~m)+i*EllipticK!'(~m),~m) => m^(1/2),
%Derivatives, Integral
%---------------------
	df(Jacobins(~u,~m),~u) => -Jacobids(u,m)*Jacobics(u,m),
	df(Jacobins(~u,~m),~m) =>
			    -(df(Jacobisn(u,m),m))/((Jacobisn(u,m))^2),

	int(Jacobins(~u,~m),~u) => ln(Jacobids(u,m) - Jacobics(u,m)),

%Calls Num_Jacobins when rounded switch is on.
%---------------------------------------------
	Jacobins(~u,~m) => Num_Elliptic(Num_Jacobins, u, m)
			   when lisp !*rounded and numberp u 
			   and numberp m
}$
let JacobiNSrules;

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
%This procedure is called by Jacobids when the on rounded switch is
%used. It evaluates the value of Jacobids numerically.

procedure Num_Jacobids(u,m);

	Num_Jacobidn(u,m) / Num_Jacobisn(u,m);

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
%Jacobids definition
%===================

operator Jacobids;

%This rule list includes all the special cases of the Jacobids
%function.

JacobiDSrules := 
{
%When m=0 or 1, Change of Parameter
%----------------------------------
	Jacobids(~u,0)   => csc u,
	Jacobids(~u,1)   => csch u,
	Jacobids(~u,-~m) => Jacobids(u,m),
%Change of Argument
%------------------
	Jacobids(-~u,~m)   =>-Jacobids(u,m),

	Jacobids((~u+EllipticK(~m)),~m) => ((1-m)^(1/2))*Jacobinc(u,m),
	Jacobids((~u-EllipticK(~m)),~m) =>-((1-m)^(1/2))*Jacobinc(u,m),
	Jacobids((EllipticK(~m)-~u),~m) => ((1-m)^(1/2))*Jacobinc(u,m),

	Jacobids((~u+2*EllipticK(~m)),~m) => -Jacobids(u,m),
	Jacobids((~u-2*EllipticK(~m)),~m) => -Jacobids(u,m),
	Jacobids((2*EllipticK(~m)-~u),~m) =>  Jacobids(u,m),
	Jacobids((~u+i*EllipticK!'(~m)),~m) =>
 					    -i*(m^(1/2))*Jacobicn(u,m),

	Jacobids((~u+2*i*EllipticK!'(~m)),~m) => -Jacobids(u,m),

	Jacobids((~u+EllipticK(~m)+i*EllipticK!'(~m)),~m) => 
			       i*((1-m)^(1/2))*(m^(1/2))*Jacobisd(u,m),

	Jacobids((~u+2*EllipticK(~m)+2*i*EllipticK!'(~m)),~m) => 
							 Jacobids(u,m),
%Special Arguments
%-----------------
	Jacobids(0,~m) => infinity,

	Jacobids((1/2)*EllipticK(~m),~m) => 
			       ((1+((1-m)^(1/2)))^(1/2))*((1-m)^(1/4)),

	Jacobids(EllipticK(~m),~m) => (1-m)^(1/2),

	Jacobids((1/2)*i*EllipticK!'(~m),~m) => 
				    -i*(m^(1/4))*((1+(m^(1/2)))^(1/2)),

	Jacobids((1/2)*(EllipticK(~m)+i*EllipticK!'(~m)),~m) =>

		Jacobidn((1/2)*(EllipticK(~m)+i*EllipticK!'(~m)),~m)
		/ Jacobisn((1/2)*(EllipticK(~m)+i*EllipticK!'(~m)),~m),

	Jacobids(EllipticK(~m)+(1/2)*i*EllipticK!'(~m),~m) =>
				       (m^(1/4))*((1-(m^(1/2)))^(1/2)),

	Jacobids(i*EllipticK!'(~m),~m) =>
				      Jacobidn(i*EllipticK!'(~m),~m)
				      / Jacobisn(i*EllipticK!'(~m),~m),

	Jacobids((1/2)*EllipticK(~m)+i*EllipticK!'(~m),~m) =>
			    -i*((1-m)^(1/4))*((1-((1-m)^(1/2)))^(1/2)),

	Jacobids(EllipticK(~m)+i*EllipticK!'(~m),~m) => 0,

%Derivatives, Integral
%---------------------
	df(Jacobids(~u,~m),~u) => -Jacobics(u,m)*Jacobins(u,m),
	df(Jacobids(~u,~m),~m) => 
				(Jacobisn(u,m)*df(Jacobidn(u,m),m)
				- Jacobidn(u,m)*df(Jacobisn(u,m),m))
				/ ((Jacobisn(u,m))^2),

	int(Jacobids(~u,~m),~u) => ln(Jacobins(u,m) - Jacobics(u,m)),

%Calls Num_Jacobids when on rounded switch is on.
%------------------------------------------------
	Jacobids(~u,~m) => Num_Elliptic(Num_Jacobids, u, m)
			   when lisp !*rounded and numberp u 
			   and numberp m
}$
let JacobiDSrules;

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
%This procedure is called by Jacobics when the on rounded switch is
%used. It evaluates the value of Jacobics numerically.

procedure Num_Jacobics(u,m);

	Num_Jacobicn(u,m) / Num_Jacobisn(u,m);

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
%Jacobics definition
%===================

operator Jacobics;

%This rule list includes all the special cases of the Jacobics
%function.

JacobiCSrules := 
{
%When m=0 or 1, Change of Parameter
%----------------------------------
	Jacobics(~u,0)   => cot u,
	Jacobics(~u,1)   => csch u,
	Jacobics(~u,-~m) => Jacobics(u,m),
%Change of Argument
%------------------
	Jacobics(-~u,~m)   =>-Jacobics(u,m),

	Jacobics((~u+EllipticK(~m)),~m) =>-((1-m)^(1/2))*Jacobisc(u,m),
	Jacobics((~u-EllipticK(~m)),~m) =>-((1-m)^(1/2))*Jacobisc(u,m),
	Jacobics((EllipticK(~m)-~u),~m) => ((1-m)^(1/2))*Jacobisc(u,m),
	Jacobics((~u+2*EllipticK(~m)),~m) =>  Jacobics(u,m),
	Jacobics((~u-2*EllipticK(~m)),~m) =>  Jacobics(u,m),
	Jacobics((2*EllipticK(~m)-~u),~m) => -Jacobics(u,m),
	Jacobics((~u+i*EllipticK!'(~m)),~m)   => -i*Jacobidn(u,m),
	Jacobics((~u+2*i*EllipticK!'(~m)),~m) => -Jacobics(u,m),

	Jacobics((~u+EllipticK(~m)+i*EllipticK!'(~m)),~m) => 
					-i*((1-m)^(1/2))*Jacobind(u,m),

	Jacobics((~u+2*EllipticK(~m)+2*i*EllipticK!'(~m)),~m) => 
							-Jacobics(u,m),
%Special Arguments
%-----------------
	Jacobics(0,~m) => infinity,

	Jacobics((1/2)*EllipticK(~m),~m) => (1-m)^(1/4),

	Jacobics(EllipticK(~m),~m) => 0,

	Jacobics((1/2)*i*EllipticK!'(~m),~m) => 
					      -i*((1+(m^(1/2)))^(1/2)),

	Jacobics((1/2)*(EllipticK(~m)+i*EllipticK!'(~m)),~m) =>

		Jacobicn((1/2)*(EllipticK(~m)+i*EllipticK!'(~m)),~m)
		/ Jacobisn((1/2)*(EllipticK(~m)+i*EllipticK!'(~m)),~m),

	Jacobics(EllipticK(~m)+(1/2)*i*EllipticK!'(~m),~m) =>
					      -i*((1-(m^(1/2)))^(1/2)),

	Jacobics(i*EllipticK!'(~m),~m) =>
				      Jacobicn(i*EllipticK!'(~m),~m)
				      / Jacobisn(i*EllipticK!'(~m),~m),

	Jacobics((1/2)*EllipticK(~m)+i*EllipticK!'(~m),~m) =>
						      -i*((1-m)^(1/4)),

	Jacobics(EllipticK(~m)+i*EllipticK!'(~m),~m) =>
 						      -i*((1-m)^(1/2)),
%Derivatives, Integral
%---------------------
	df(Jacobics(~u,~m),~u) => -Jacobins(u,m)*Jacobids(u,m),
	df(Jacobics(~u,~m),~m) => 
				( Jacobisn(u,m)*df(Jacobicn(u,m),m)
				- Jacobicn(u,m)*df(Jacobisn(u,m),m))
				/ ((Jacobisn(u,m))^2),

	int(Jacobics(~u,~m),~u) => ln(Jacobins(u,m) - Jacobids(u,m)),

%Calls Num_Jacobics when rounded switch is on.
%---------------------------------------------
	Jacobics(~u,~m) => Num_Elliptic(Num_Jacobics, u, m)
			   when lisp !*rounded and numberp u 
			   and numberp m
}$
let JacobiCSrules;

endmodule;

end;


REDUCE Historical
REDUCE Sourceforge Project | Historical SVN Repository | GitHub Mirror | SourceHut Mirror | NotABug Mirror | Chisel Mirror | Chisel RSS ]