<A NAME=Jordan>
<TITLE>Jordan</TITLE></A>
<b><a href=r37_idx.html>INDEX</a></b><p><p>
<B>JORDAN</B> _ _ _ _ _ _ _ _ _ _ _ _ <B>operator</B><P>
<P>
The operator <em>jordan</em> computes the Jordan normal form J
of a
<A HREF=r37_0345.html>matrix</A> (A say). It returns {J,P,P^-1} where P*J*P^-1 =
A.
<P>
<P>
<P> <H3>
syntax: </H3>
<em>jordan</em>(<matrix>)
<P>
<P>
<matrix> :- a square
<A HREF=r37_0345.html>matrix</A>.
<P>
<P>
<P>
Field Extensions:
By default, calculations are performed in the rational numbers. To
extend this field the <em>arnum</em> package can be used. The package must
first be loaded by load_package arnum;. The field can now be extended
by using the defpoly command. For example, defpoly sqrt2**2-2; will
extend the field to include the square root of 2 (now defined by sqrt2).
See
<A HREF=r37_0626.html>frobenius</A> for an example.
<P>
<P>
Modular Arithmetic:
<em>Jordan</em> can also be calculated in a modular base. To do this
first type on modular;. Then setmod p; (where p is a prime) will set
the modular base of calculation to p. By further typing on balanced_mod
the answer will appear using a symmetric modular representation. See
<A HREF=r37_0627.html>ratjordan</A> for an example.
<P>
<P>
<P> <H3>
examples: </H3>
<P><PRE><TT>
a := mat((1,x),(0,x));
[1 x]
a := [ ]
[0 x]
jordan(a);
{
[1 0]
[ ]
[0 x]
,
[ 1 x ]
[------- --------------]
[ x - 1 2 ]
[ x - 2*x + 1 ]
[ ]
[ 1 ]
[ 0 ------- ]
[ x - 1 ]
,
[x - 1 - x ]
[ ]
[ 0 x - 1]
}
</TT></PRE><P>