<A NAME=HermiteP>
<TITLE>HermiteP</TITLE></A>
<b><a href=r37_idx.html>INDEX</a></b><p><p>
<B>HERMITEP</B> _ _ _ _ _ _ _ _ _ _ _ _ <B>operator</B><P>
<P>
The <em>HermiteP</em> operator returns the nth Hermite Polynomial.
<P>
<P>
<P> <H3>
syntax: </H3>
<em>HermiteP</em>(<integer>,<expression>)
<P>
<P>
<P>
<P> <H3>
examples: </H3>
<P><PRE><TT>
HermiteP(3,xx);
2
4*xx*(2*xx - 3)
HermiteP(3,4);
464
</TT></PRE><P>Hermite polynomials are computed using the recurrence relation:
<P>
<P>
HermiteP(n,x) := 2x*HermiteP(n-1,x) - 2*(n-1)*HermiteP(n-2,x) with
<P>
<P>
HermiteP(0,x) := 1 and HermiteP(1,x) := 2x
<P>
<P>
<P>
<P>