<A NAME=glexconvert>
<TITLE>glexconvert</TITLE></A>
<b><a href=r37_idx.html>INDEX</a></b><p><p>
<B>GLEXCONVERT</B> _ _ _ _ _ _ _ _ _ _ _ _ <B>operator</B><P>
<P>
<P>
<P>
<P> <H3>
syntax: </H3>
<em>glexconvert</em>(<bas>[,<vars>][,MAXDEG=<mx>]
[,NEWVARS=<nv>])
<P>
<P>
<P>
<P>
where <bas> is a
<A HREF=r37_0382.html>groebner</A> basis
in the current term order, <mx> (optional) is a positive
integer and <nvl> (optional) is a list of variables
(see
<A HREF=r37_0352.html>ideal parameters</A>).
<P>
<P>
The operator <em>glexconvert</em> converts the basis
of a zero-dimensional ideal (finite number
of isolated solutions) from arbitrary ordering into a basis under
<A HREF=r37_0356.html>lex term order</A>.
<P>
<P>
The parameter <newvars> defines the new variable sequence.
If omitted, the
original variable sequence is used. If only a subset of variables is
specified here, the partial ideal basis is evaluated.
<P>
<P>
If <newvars> is a list with one element, the minimal
<em>univariate polynomial</em> is computed.
<P>
<P>
<maxdeg> is an upper limit for the degrees. The algorithm stops with
an error message, if this limit is reached.
<P>
<P>
A warning occurs, if the ideal is not zero dimensional.
<P>
<P>
During the call the <em>term order</em> of the input basis must
be active.
<P>
<P>
<P>