File r37/lisp/csl/html/r37_0344.html from the latest check-in



<A NAME=MATEIGEN>

<TITLE>MATEIGEN</TITLE></A>
<b><a href=r37_idx.html>INDEX</a></b><p><p>



<B>MATEIGEN</B> _ _ _  _ _ _  _ _ _  _ _ _ <B>operator</B><P>
<P>
 
 <P>
<P>
The <em>mateigen</em> operator calculates the eigenvalue equation and the 
corresponding eigenvectors of a 
<A HREF=r37_0345.html>matrix</A>. 
 <P> <H3> 
syntax: </H3>
<P>
<P>
<em>mateigen</em>(&lt;matrix-id&gt;,&lt;tag-id&gt;) 
<P>
<P>
<P>
&lt;matrix-id&gt; must be a declared matrix of values, and &lt;tag-id&gt; must b
e 
a legal REDUCE identifier. 
<P>
<P>
 <P> <H3> 
examples: </H3>
<P><PRE><TT>
aa := mat((2,5),(1,0))$ 

mateigen(aa,alpha); 

         2
  {{ALPHA  - 2*ALPHA - 5,
    1,
                5*ARBCOMPLEX(1)
    MAT(1,1) := ---------------,
                   ALPHA - 2
    MAT(2,1) := ARBCOMPLEX(1)
    }}


charpoly := first first ws; 

                   2
  CHARPOLY := ALPHA  - 2*ALPHA - 5 


bb := mat((1,0,1),(1,1,0),(0,0,1))$ 

mateigen(bb,lamb); 

  {{LAMB - 1,3,
    [      0      ]
    [ARBCOMPLEX(2)]
    [      0      ]
    }}

</TT></PRE><P>The <em>mateigen</em> operator returns a list of lists of three 
elements. The first element is a square free factor of the characteristic 
polynomial; the second element is its multiplicity; and the third element 
is the corresponding eigenvector. If the characteristic polynomial can be 
completely factored, the product of the first elements of all the sublists 
will produce the minimal polynomial. You can access the various parts of 
the answer with the usual list access operators. 
<P>
<P>
If the matrix is degenerate, more than one eigenvector can be produced for 
the same eigenvalue, as shown by more than one arbitrary variable in the 
eigenvector. The identification numbers of the arbitrary complex variables 
shown in the examples above may not be the same as yours. Note that since 
<em>lambda</em> is a reserved word in REDUCE, you cannot use it as a 
tag-id for this operator. 
<P>
<P>
<P>


REDUCE Historical
REDUCE Sourceforge Project | Historical SVN Repository | GitHub Mirror | SourceHut Mirror | NotABug Mirror | Chisel Mirror | Chisel RSS ]