<A NAME=QUOTIENT>
<TITLE>QUOTIENT</TITLE></A>
<b><a href=r37_idx.html>INDEX</a></b><p><p>
<B>QUOTIENT</B> _ _ _ _ _ _ _ _ _ _ _ _ <B>operator</B><P>
<P>
The <em>quotient</em> operator is both an infix and prefix binary operator that
returns the quotient of its first argument divided by its second. It is
also a unary
<A HREF=r37_0101.html>recip</A>rocal operator. It is identical to <em>/</em> and
<A HREF=r37_0030.html>slash</A>.
<P> <H3>
syntax: </H3>
<P>
<P>
<em>quotient</em>(<expression>,<expression>) or
<expression> <em>quotient</em> <expression> or
<em>quotient</em>(<expression>) or
<em>quotient</em> <expression>
<P>
<P>
<P>
<expression> can be any valid REDUCE scalar expression. Matrix
expressions can also be used if the second expression is invertible and the
matrices are of the correct dimensions.
<P> <H3>
examples: </H3>
<P><PRE><TT>
quotient(a,x+1);
A
-----
X + 1
7 quotient 17;
7
--
17
on rounded;
4.5 quotient 2;
2.25
quotient(x**2 + 3*x + 2,x+1);
X + 2
matrix m,inverse;
m := mat((a,b),(c,d));
M(1,1) := A;
M(1,2) := B;
M(2,1) := C
M(2,2) := D
inverse := quotient m;
D
INVERSE(1,1) := ----------
A*D - B*C
B
INVERSE(1,2) := - ----------
A*D - B*C
C
INVERSE(2,1) := - ----------
A*D - B*C
A
INVERSE(2,2) := ----------
A*D - B*C
</TT></PRE><P><P>
<P>
The <em>quotient</em> operator is left associative: <em>a quotient b quotient c
</em>
is equivalent to <em>(a quotient b) quotient c</em>.
<P>
<P>
If a matrix argument to the unary <em>quotient</em> is not invertible, or if the
second matrix argument to the binary quotient is not invertible, an error
message is given.
<P>
<P>
<P>