File r38/packages/mathml/mml_ir.red artifact ce1601a6dd part of check-in trunk


%  Description: This module contains both functions for passing MathML to the Intermediate 
%               representation and from the intermediate representation to MathML.
%               Both main functions are: mml2ir() and ir2mml().
% 
%  Date: 2 May 2000
% 
%  Author: Luis Alvarez Sobreviela
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%  Here start the functions in charge of parsing MathML and printing           	%
%  it out in REDUCE intermediate representation.	MathML->REDUCE IR	%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% WN global '(f);

fluid '(constructors!* !*f!*);

% This is the function for reading from a file. It is given the name of a file which contains
% the mathml input. It launches the program by calling mml2ir().

symbolic procedure mml(f);
begin;
 FILE!*:=t;
 !*f!*:= open(f, 'input);
 !*f!*:= rds(!*f!*);
 mml2ir();
 close rds !*f!*;
 FILE!*:=nil; 
end;

% This function starts the parsing mechanism, which is a recursive descent
% parsing. Begins at the <math> token.


symbolic procedure mml2ir();
begin scalar res;
 res:=nil;
 mmlatts:=nil;
 space:=int2id(32);
 count:=0;
 ch:=readch();
 temp2:=nil;
 lex();
 if char='(m a t h) then
     res:=mathML()
   else errorML("<math>",2);
 lex();
 if char='(!/ m a t h) then
   terpri() 
   else errorML("</math>",19);

 return res;
end;

% The two next functions differ in that one of them parses from the next
% token onwards, and the other one from the actual token onwards.
% It is necessary to have both since some functions end their task one 
% token ahead (eg getargs()).

symbolic procedure mathML();
begin scalar a;
 a:=nil;
 lex();
 return sub_math();
end;

symbolic procedure mathML2();
begin scalar a;
 a:=nil;
 return sub_math();
end;

% Parses all tokens which legally follow a <math> token.
% These tokens have to be constructors.

symbolic procedure sub_math();
begin scalar a, aa;
 a:=nil;

 if char='(i d e n t !/) then return list 'ident;

 % The reason why we perform an individual test to see if we are dealing with a vector tag
 % is because REDUCE changes vector in the list to ~vector when compressing (v e c t o r)
 % and then it doesnt work anymore...

  if char='(v e c t o r) then 
   <<a:=vectorRD();
     if char neq '(!/ v e c t o r) then 
       errorML("</vector>",2);
     return a>>;

 if (aa:=assoc(compress!* char, constructors!*)) then <<
    a:=apply(cadr aa, nil );
    if PAIRP a then if car a = 'csymbol then a:=cddr a;
    if PAIRP a then if car a = 'fn then a:=cddr a;
    if compress!* char neq third aa then
      errorML(third cdr aa, 2);
    return a>>;

  return nil;
end;


% The next two functions parse the <cn> and <ci> tokens and extract its
% content to be used by the function calling it. It will have different
% behaviours according to the attributes contained.

symbolic procedure cnRD();
begin scalar type, sep, tt, base;
% Must check that what is being returned is an int.
 type:=nil; 
 sep:=nil;
 type:=intern find(atts, 'type);
 base:=find(atts, 'base);
 lex();
 tt := char;
 
 lex();

 if type='constant then return compress!* tt;

 if type=nil then return compress!* tt;

 if member(type, '(real integer)) neq nil then <<
   if base eq nil then return compress!* tt
   else return 'based_integer . nil . base . list ('string . list compress!* tt)
 >>;

 if member(intern type, '(rational complex!-cartesian complex!-polar)) neq nil then
   << sep:=sepRD();
      if type='rational then <<
        lex();
	return rational(compress!* tt, sep)
      >>
      else
       if type='complex!-cartesian then 
	 << lex();return 'complex_cartesian . nil . compress!* tt . list sep >>
       else
        if type='complex!-polar then
	 << lex();return 'complex_polar . nil . compress!* tt . list sep >>
   >>;
end;


symbolic procedure ciRD();
begin scalar test, type,aa, tt, ats;
 aa:=nil; type:=nil; test:=nil;
 ats:=retattributes(atts, '(type));
 lex();
 tt := char;
 lex();
  << test:=compress tt;
     if NUMBERP test then errorML(test, 4);
     test := compress!* tt;
     if ats = nil then return test;
     return list('ci, ats, test)>>
end;

% returns the value of the constant values.
% !!!!!!!!!! USELESS
%symbolic procedure consts(c);
%begin;
% if c='(quote i) then return 'i;
% if c='(quote d) then return 'd;
% if c='(quote e) then return 'e;
% if c='(quote p) then return 'pi;
% if c='(quote infinity) then return 'infinity;
% if c='(quote gamma) then return 'gamma;
%end;

% Constructs a rational number in intermediate representation

symbolic procedure rational(a,b);
begin;
 return 'rational . nil . a . list b;
end;

% Reads through values seperated by <sep/> tags and 
% returns them in a list

symbolic procedure sepRD();
begin scalar p1, p2;
 p1:=nil; p2:=nil;
 if char neq '(s e p !/) then errorML("<sep/>",2);
 lex();
 p2:=compress!* char;
 return p2;
end; 

% Creates a vector by using function matrix_row.

symbolic procedure vectorRD();
begin scalar a, ats;
 ats:=retattributes(atts, '(type other));
 a:=nil;
 a:=matrixrowRD();
 a:=cons('vectorml,cons(ats, a));
 return a;
end;

% The following functions constructs the matrix from the mathml information.

symbolic procedure matrixRD();
begin scalar b1, stop, ats, b2;
 ats:=retattributes(atts, '(type));
 stop:=0;
 b1:='();
 b2:=nil;
 while stop=0 do
 <<
   lex();
   if char='(m a t r i x r o w) then 
    <<b2:=matrixrowRD();
      if b1 neq nil then b1:=append(b1, list b2)
      else b1:=list b2;
      if char neq '(!/ m a t r i x r o w) then 
       errorML("</matrixrow>",2)>>
   else stop:=1
  >>; 
 return cons('matrix, cons(ats,cons('matrixrow, list b1)));
end;

symbolic procedure matrixrowRD();
begin scalar a;
 a:=nil;
 a:=mathML();
 return if a=nil then nil
        else cons(a, matrixrowRD());
end;

% returns a lambda function constructed from the information supplied.

symbolic procedure lambdaRD();
begin scalar b1, b2, ats;
 ats:=retattributes(atts, '(type definitionURL encoding)); 
 lex();
 b1:=getargsRD();
 b2:=mathML2();
 lex();
 return cons('lambda, cons(ats, append (b1, list b2)));
end;

% returns a set constructed from the information supplied.

symbolic procedure setRD();
begin scalar setvars, ats;
 ats:=retattributes(atts, '(type));
 setvars:= cons('set, cons(ats, stats_getargs()));
 return setvars;
end;

% returns a list constructed from the information supplied.

symbolic procedure listRD();
begin scalar ats;
 ats:=retattributes(atts, '(order));
 return cons('list, cons(ats , stats_getargs()));
end;



symbolic procedure fnRD();
begin scalar b1;
 lex();
 if char neq '(c i) then errorML(compress char,20)
 else b1:= mathML2();
 lex();
 return b1;
end;

% Reads the declare construct and sets the value of the given variable to
% the given value.

symbolic procedure declareRD();
begin scalar b1, b2, ats;
 ats:=retattributes(atts, '(type nargs occurence scope definitionURL));
 lex();
 if char='(c i) then
  << b1:=ciRD()>>
 else errorML("<ci>", 8);
 lex();
 if char neq '(!/ d e c l a r e) then <<b2 :=mathML2(); lex()>>;
 
 return cons('declare, list(ats, b1, b2));
end;

% This function will determine if the next token is a valid token following
% an apply token. It then calls the appropriate function if succesful.

symbolic procedure applyRD();
begin scalar aa, fun;
 lex();
 % This following _if_ statement relates the mathml tag to its entry in functions!*
 % It then returns a list starting with the name of the function followed by its 
 % arguments: eg: (plus 1 2 3).
 % It uses the table in functions!* to find the function name (the third entry) and 
 % the arguments to send the RD function. 

 mmlatts:=retattributes(atts, '(type definitionURL encoding)); 

 if (aa:=assoc(compress!* char, functions!*)) then <<
   fun:=apply(cadr aa, nil);
   fun:=mmlatts . fun;
   mmlatts:=nil;   
   return cons(cadr rest aa, fun);
 >>;
 errorML(compress char, 17);
end;


%  Reads through a select construct and acts accordingly.

symbolic procedure selectRD();
begin scalar a1, b2, b3;
 a1:=mathml();

 if car a1 = 'matrix then << 
   b2:=mathml();
   lex();
   if char neq '(!/ a p p l y) then <<b3:=MathML2(); lex()>>;
   return cons(a1, list(b2, b3))
 >>;

 if car a1 = 'list OR car a1 = 'vectorml then << 
   b2:=mathml();
   lex(); 
   return cons(a1, list b2)
 >>;
  
end;

% Returns the transpose of the element contained in the transpose tags.

symbolic procedure transposeRD();
begin scalar a;
 a:=mathML();
 lex();
 return list a;
end;

% Returns the determinant of the given element.

symbolic procedure determinantRD();
begin scalar a;
 a:=mathML();
 lex();
 return list a;
end;

% Takes the given function name, makes it an operator, and then
% applies it to the arguments specified in the mathml input.

symbolic procedure applyfnRD();
begin scalar b1, b2, c1;
 b1:=nil; b2:=nil; c1:=nil;
 b1:=fnRD();
 b2:=stats_getargs();
 return b1 . nil . b2;
end;

% Introduces the new csymbol element of MathML 2.0

symbolic procedure csymbolRD();
begin scalar b1, b2, c1;
 b1:=nil; b2:=nil; c1:=nil;
 b1:=fnRD();
 b2:=stats_getargs();
 return b1 . nil . b2;
end;                

% Reads the condition tag.

symbolic procedure conditionRD();
begin scalar a;
 a:=mathml();
 lex();
 if char neq '(!/ c o n d i t i o n) then errorML("</condition>", 2);
 return cons('condition, list a);
end;

% This function will read all legal tags following the <reln> tag.

fluid '(relations!*);

symbolic procedure relnRD();
begin scalar aa, ats;
 lex();
 ats:=retattributes(atts, '(type definitionURL)); 
 if (aa:=assoc(compress!* char, relations!*)) then return cons(cadr rest aa, cons(ats, apply(cadr aa, nil)));
end;

symbolic procedure relationRD( type );
begin scalar args;
 args:=stats_getargs();
 return cons(cadr type, args);
end;

%!!!!!!!! PROBABLY USELESS FUNCTION!!!!!
symbolic procedure binaryrelationRD( type );
begin scalar arg1, arg2;
 arg1 := MathML();
 arg2 := MathML();
 lex();
 return cons(type, list (arg1, arg2));
end;

% The following functions do all the necessay actions in order to evaluate
% what should be by the tags.


symbolic procedure subsetRD();
begin scalar abc1;
abc1:=nil;
abc1:=mathML();
return if abc1 = nil then '()
	else cons(abc1, subsetRD());
end;

symbolic procedure prsubsetRD();
begin scalar abc1;
abc1:=nil;
abc1:=mathML();
return if abc1 = nil then '()
	else cons(abc1, prsubsetRD());
end;

% These functions parse through most MathML elements,
% since many fall in the unary, binary and nary categories.

symbolic procedure unaryRD();
begin scalar a;
  a:= mathML();
  lex();
  return list a;
end;

symbolic procedure binaryRD();
begin scalar a1, a2;
  a1:=mathML();
  a2:=mathML();
  lex();
  return cons(a1, list a2);
end;

symbolic procedure naryRD();
begin scalar a;
a:=mathML();
return if a = nil then '()
	else cons(a, naryRD());
end;

symbolic procedure setFuncsNaryRD();
begin scalar a;
a:=mathML();
if PAIRP a then <<if cadr a neq nil then if intern cadr car cadr a = 'multiset then mmlatts:='multiset;>>;
return if a = nil then '()
	else cons(a, setFuncsnaryRD());
end;

symbolic procedure setFuncsBinRD();
begin scalar flag,a1,a2;
  flag:=nil;
  a1:=mathML();
  if PAIRP a1 then <<if cadr a1 neq nil then if intern cadr car cadr a1 = 'multiset then flag:=t;>>;
  a2:=mathML();
  if PAIRP a2 then <<if cadr a2 neq nil then if intern cadr car cadr a2 = 'multiset then flag:=t else flag:=nil;>>;
  lex();
  if flag=t then mmlatts:='multiset;
  return cons(a1, list a2);
end;


% Encodes information given in a <limit/> tag.

symbolic procedure limitRD();
begin scalar var, condi, low, exp, ats;
 ats:=retattributes(atts, '(definitionurl));
 low:=nil;
 lex();
 if char='(b v a r) then
  << var:=bvarRD();
     if (caddr var neq 1) then errorML("<degree>",8);
     lex()>>
 else var:=nil;

 if char='(l o w l i m i t) then
  << low:=lowlimitRD();
     >>
 else if char='(c o n d i t i o n) then 
     <<	condi:=conditionRD()
        >>
      else condi:=nil;

 exp:=mathML();
 lex();

 if condi=nil then 
   return list(var, low, exp);

 if low=nil then 
        return list(var, condi, exp);
end; 

% Returns the partial derivative.

symbolic procedure partialdiffRD();
begin scalar res, bvar, express;
 lex();
 bvar:=getargsRD();
 express:=mathML2();
 lex();
% res:=cons(express, bvar);
 res:=append(bvar, list express);
 return res;
end;
 
% Returns the derivative.

symbolic procedure diffRD();
begin scalar bvar, express;
 lex();
 if char='(b v a r) then 
  <<bvar:=bvarRD(); 
    lex()>>
 else bvar:=nil;
 express:=mathML2();
 lex();
 return diff2 list(bvar, express);
end;

% This function restructures the IR when we are differentiating
% more than degree 1 so the translation is possible to OM

symbolic procedure diff2(elem);
begin scalar fun, res, deg, var;
  deg:=caddr car elem;
  var:=cadr car elem;
  if deg=1 then return elem;
  fun:=car reverse elem;
  res:='diff . nil . ('bvar . var .list  1) . list fun;
  deg:=deg-1;
  while deg > 0 do <<
  res:='diff . nil . ('bvar . var .list  1) . list res;
  deg:=deg-1;
  >>;
  return cddr res;
end;


% This function reads through the a series of <bvar> tags and extracts the
% variables.

symbolic procedure getargsRD();
begin scalar a;

% Dont forget. This function leaves the file pointer on 
% the next token after the last bvar. So you need to use mathML2 after.

if char='(b v a r) then 
<<a:=bvarRD();
  lex();
  return cons (a,getargsRD())>>;
end; 

% Parses through MathML quantifiers

symbolic procedure quantifierRD();
begin scalar bvars, condi, exp;
  lex();
  bvars:=getargsRD();
  if char='(c o n d i t i o n) then 
     condi:=conditionRD()
  else condi:=nil;

  if condi neq nil then exp:=MathML()
  else exp:=MathML2();
  lex();
  return append(bvars, list(condi, exp)); 
end;

% This function will parse through the sum, product and int tags. Takes in the expression, then
% the bound variable, and finally the limits, conditions or intervals if they exist.

symbolic procedure symbolsRD();
begin scalar bvar, low, upper, int, exp, result, cond;
 low:=nil;
 upper:=nil;
 int:=nil;
 exp:=nil;
 result:=nil;
 cond:=nil;
 lex();
 if char='(b v a r) then 
      <<bvar:=bvarRD(); 
	if (caddr bvar eq 1) then bvar:=bvar
        else 
	 errorML("",13);
        lex()>>
   else errorML("<bvar>",14);


 if char='(l o w l i m i t) then <<low:=lowupperlimitRD(); lex()>>
   else low:=nil;

 if char='(i n t e r v a l) then 
   <<int:=intervalRD(); 
     lex()>>
   else int:=nil;

 if char='(c o n d i t i o n) then 
   <<cond:=conditionRD(); 
     lex()>>
   else cond:=nil;

 exp:=mathML2();
 lex();
 if (low neq nil) then return list(bvar, low, exp);
 if (int neq nil) then return list(bvar, int, exp);
 if (cond neq nil) then return list(bvar, cond, exp);
 return list(bvar, nil, exp);
end;

% Here we parse bound variables. The function reads the variable as well as
% the degree if there is one.

symbolic procedure bvarRD();
begin scalar var, deg;
 lex();
 if char='(d e g r e e) then 
     errorML("<bvar>",15);
 var:=mathML2();
 lex();
 if char='(d e g r e e) then 
   << deg:=mathML();
      lex();
      if char neq '(!/ d e g r e e) then 
	error("</degree>",2);
      lex()>>
 else deg:=1;

 if char='(!/ b v a r) then return cons('bvar , list(var, deg))
   else errorML("</bvar>", 2);
end;

% Functions used to parse the limits of an integral, sum, or product.

symbolic procedure lowupperlimitRD();
begin scalar lowlimit,  upperlimit;
 lowlimit:=mathML();
 lex();
 if char='(!/ l o w l i m i t) then upperlimit:=upperlimitRD()
   else errorML("</lowlimit>", 2);
 return cons('lowupperlimit, list (lowlimit, upperlimit))
end;

symbolic procedure lowlimitRD();
begin scalar lowlimit;
 lowlimit:=mathML();
 lex();
 if char neq '(!/ l o w l i m i t) then errorML("</lowlimit>", 2);
 return cons('lowlimit, list lowlimit);
end;

symbolic procedure upperlimitRD();
begin scalar upperlimit;
 lex();
 if char neq '(u p l i m i t) then errorML("<uplimit>", 10);
 upperlimit:=mathML();
 lex();
 if char='(!/ u p l i m i t) then return upperlimit 
   else errorML("</uplimit>", 2);
end;

symbolic procedure intervalRD();
begin scalar l,u, ats;
 ats:=retattributes(atts, '(closure));
 l:=mathML();
 u:=mathML();
 lex();
 if char='(!/ i n t e r v a l) then return cons('interval, list(ats, l,u)) 
   else errorML("</interval>", 2);
end;

% Following functions just evaluate calculus functions. 

symbolic procedure logRD();
begin scalar a1, base;
 base:=nil;
 lex();
 if char='(l o g b a s e) then 
    <<base:=logbaseRD();
      lex()>>;
  a1:=mathML2();
  lex();
   return cons(base, list a1);
end;

symbolic procedure logbaseRD();
begin scalar a;
 a:=mathML();
 lex();
 if char='(!/ l o g b a s e) then return a
   else errorML("</logbase>",2);
end;


% % Work on here. Make sure you can have either one or two arguments...
symbolic procedure minusRD();
begin scalar c,b;
  c:=mathML();
  b:=mathML();
  if b=nil then c:= cons(c,'())
   else <<
	c:=cons(c, cons(b, '())); 
	lex()>>;
  return c;
end;


symbolic procedure rootRD();
begin scalar b,deg;
  lex();
  if char='(d e g r e e) then 
  << deg:=mathML();
     lex();
     if char neq '(!/ d e g r e e) then 
       error("</degree>","Syntax ERROR: Missing end tag");
     lex()>>
  else deg:=2;

  b:=mathML2();
  lex();
  return list(cons('degree, list deg), b);
end;



symbolic procedure minmaxRD();
begin scalar a, bvar, cond, flag;
 lex();
 flag:=0;
 if char = '(b v a r) then <<bvar:=bvarRD(); flag:=1; lex();>> else bvar:=nil;
 if char = '(c o n d i t i o n) then <<cond:=conditionRD()>> 
 else <<
   a:=mathml2();
   a:=cons(a, stats_getargs());
   cond:=nil
 >>;

 if flag=1 then << a:=MathML2(); lex()>>;
 if bvar neq nil then return cons(bvar, append(list cond, list a));
 if cond neq nil then return list(cond);
 return a;
end;


% Following function are in charge of parsing statistics related mathml.

symbolic procedure momentRD( );
begin scalar  deg, child;
 lex();
 if char='(d e g r e e) then 
   << deg:=mathML();
      lex();
      if char neq '(!/ d e g r e e) then 
	error("</degree>",2);
      lex()>>
 else deg:=nil;

 child:=mathml2();
 lex();

 return list(cons('degree, list deg), child);
end;

% The following function gets all arguments from the mathml input. 

symbolic procedure stats_getargs();
begin scalar ww;
  ww:=nil;
  ww:=mathML();
  if ww neq nil then <<
  return cons (ww,stats_getargs())>>;
end; 


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%   Here start the functions in charge of parsing reduce's output and printing %
%   it out in MathML.                 REDUCE->MathML			       %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%


% The following function takes an IR expression and produces a MathML equivalent

symbolic procedure ir2mml( u );
begin;
     FLUID '(indent);
     ind:=3;
     indent:=0$
     printout("<math>");
     indent!* t;
     expression u;
     indent!* nil;
     printout( "</math>" );
end;                                                                        

% Prints out vectors.

symbolic procedure vectorML( elem );
begin;
   printout("<vector");
   attributesML(car elem, "");
   indent!* t;
   multi_elem(cdr elem);
   indent!* nil;
   printout("</vector>");
end;

% Following functions print out matrices.

symbolic procedure matrixML( elem );
begin;
   printout("<matrix");
   attributesML(car elem, "");
   indent!* t;
   if cadr elem = 'matrixrow then matrix_rows(caddr elem)
   else matrix_rows(cols2rows caddr elem);
   indent!* nil;
   printout("</matrix>")
end;

symbolic procedure matrix_rows( elem );
begin;
  if (elem neq()) then 
     <<	printout("<matrixrow>");           
	indent!* t;
	row(car elem); 	
  	indent!* nil;
	printout("</matrixrow>");           
	matrix_rows( cdr elem ); >>
end;

symbolic procedure row( elem );
begin;
  if (elem neq()) then 
 	<< expression(car elem); row(cdr elem);>>
end;


symbolic procedure identML(elem);
begin;
  printout( "<ident/>" );  
end;  

% This function takes in an intermediate representation expression, parses it and prints it
% in MathML.

fluid '(ir2mml!*);

symbolic procedure expression( elem );
begin scalar aa;;
if elem neq nil then
if (ATOM elem) then constsML( elem ) else
 << 
  if (aa:=assoc(car elem, ir2mml!*)) then <<
     if caddr aa = nil then 
       apply(cadr aa, list cdr elem)
     else 
       apply(cadr aa, list(cdr elem, car elem)) 
  >> 
  else
    if ((car elem)= '!*sq)  then expression (PREPSQ (cadr elem)) 
    else operator_fn(elem);>>;
end;

symbolic procedure tendstoML( elem );
begin;
   printout("<apply><tendsto");
   attributesML(car elem, "/");
   indent!* t;
   expression(cadr elem);
   expression(caddr elem);
   indent!* nil;
   printout("</apply>");
end;


% Prints out derivatives.

symbolic procedure dfml( elem );
begin scalar test;
 test:=cdr elem;
 if length test=1 OR (length test=2 AND NUMBERP
cadr test) then
    printout("<apply><diff/>")
 else
    printout("<apply><partialdiff/>");
 indent!* t;
 dfargs(cdr elem);
 expression(car elem);
 indent!* nil;
 printout("</apply>");
end;

symbolic procedure dfargs( elem );
begin;
 if elem neq nil then
   << if length elem>1 then
      <<  if NUMBERP cadr elem then
          <<printout("<bvar>");
            indent!* t;
            expression car elem;
            degreeML(cadr elem);
            indent!* nil;
            printout("</bvar>");
            dfargs(cddr elem)>>
          else
          <<printout("<bvar>");
            indent!* t;                
           expression car elem;
            indent!* nil;
            printout("</bvar>");
            dfargs(cdr elem)>>; >>
      else
        << printout("<bvar>");
           indent!* t;
           expression car elem;
           indent!* nil;
           printout("</bvar>");
           dfargs(cdr elem)>> >>;
end;                   


% Prints out degree statements.

symbolic procedure degreeML( elem );
begin;
 if car elem neq nil then <<
   printout("<degree>");
   indent!* t;
   expression( car elem );
   indent!* nil;
   printout("</degree>") >>;
end;

      
symbolic procedure rationalML(elem);
begin scalar a, b;
 a:=cadr elem;
 b:=caddr elem;
 printout("<cn type=""rational"">");
 princ a; princ "<sep/>"; princ b; princ "</cn>";
end; 


% Prints out relns.

symbolic procedure reln(elem, tty);
begin;
 printout("<apply>");
 princ "<"; princ tty;
 attributesML(car elem, "/");
 indent!* t;
 multi_elem( cdr elem );
 indent!* nil;
 printout("</apply>");
end; 

% Prints out a set.

symbolic procedure containerML( elem, tty );
begin;
  if tty = 'integer_interval then tty:='interval;
  printout("<"); princ tty;
  attributesML(car elem, "");
  indent!* t;
  multi_elem( cdr elem );
  indent!* nil;
  printout("</"); princ tty; princ ">";
end;

% Prints out set theory related functions.

symbolic procedure sets(elem, tty);
begin;
 printout("<apply>");
 princ "<"; princ tty; 
 attributesML(car elem, "/"); 
 indent!* t;
 multi_elem( cdr elem );
 indent!* nil;
 printout("</apply>");
end; 

symbolic procedure listML( elem );
begin;
  printout( "<list" );
  attributesML(car elem,"");
  indent!* t;
  multilists( cdr elem );
  indent!* nil;
  printout( "</list>" );
end;            

symbolic procedure multilists( elem );
begin;
 if elem neq nil then
  if ((LENGTH elem)=1) then expression (car elem)
    else <<expression(car elem); multilists(cdr elem);>>
end;   

% Prints out unknown functions as a function. It prints out all variables
% declared as operators.

symbolic procedure csymbol_fn( elem );
begin;
  printout("<apply>");
  indent!* t;
  printout("<csymbol");
  if car elem neq nil then attributesML(car elem, "")
  else princ ">";
  indent!* t;
  printout("<ci>");
  princ cadr elem;
  princ "</ci>";
  indent!* nil;
  printout("</csymbol>");
  multi_args(cddr elem);      
  indent!* nil;
  printout("</apply>");        
end;

symbolic procedure operator_fn( elem );
begin;
  printout("<apply>");
  indent!* t;
  printout("<csymbol>");
  indent!* t;
  printout("<ci>");
  princ car elem;
  princ "</ci>";
  indent!* nil;
  printout("</csymbol>");
  multi_args(cdr elem);      
  indent!* nil;
  printout("</apply>");        
end;

% Reads through a list and prints out each component. 

symbolic procedure multi_args( elem );
begin;
  if  (elem neq ()) then <<expression(car elem); multi_args( cdr elem );>> 
end;


% Prints out logs with a base.

symbolic procedure log_baseML(elem, type);
begin;
  printout("<apply><log");
  attributesML(car elem, "/");
  indent!* t;
  if car reverse elem neq nil then <<
    printout("<logbase>");
    indent!* t;
    expression(cadr elem);
    indent!* nil;
    printout("</logbase>")>>;
    expression(caddr elem);
    indent!* nil;
    printout("<apply>");
end; 


% Prints out equal relns.

symbolic procedure equalML( elem );
begin;
  printout( "<reln><eq/>" );
  indent!* t;
  expression(car elem);
  expression(cadr elem);
  indent!* nil;
  printout( "</reln>" );
end;

% Prints out square roots and moments.

symbolic procedure degreetoksML( elem, tty );
begin;
  printout( "<apply><" ); princ tty;
  attributesML(car elem, "/");
  indent!* t;
  degreeML(cdadr elem);
  expression( caddr elem );
  indent!* nil;
  printout( "</apply>" );
end;

symbolic procedure bvarML(elem);
begin;
  printout("<bvar>");
  indent!* t;
  expression(car elem);
  if cadr elem neq 1 then <<
    degreeML(list cadr elem);
  >>;  
  indent!* nil;
  printout("</bvar>")
end;
  
% This function prints a series of bvar statements

symbolic procedure xbvarML(elem);
begin;
  if elem neq nil then <<bvarML cdar elem; xbvarML cdr elem>>;
end;
  
symbolic procedure conditionML( elem );
begin;
  printout("<condition>");
  indent!* t;
  expression(car elem);
  indent!* nil;
  printout("</condition>")
end;

symbolic procedure lambdaML( elem );
begin;
  printout("<lambda");
  attributesml(car elem, "");
  indent!* t;
  multi_elem(cdr elem);
  indent!* nil;
  printout("</lambda>")
end;

symbolic procedure attributesML( a, s );
begin;
  if a eq nil then <<princ s; princ ">">>
  else <<
     princ " ";
     princ caar a; 	
     princ "="""; 
     if caar a neq 'definitionurl then <<
        if cadar a = 'vectorml then princ "vector"
        else princ cadar a;
     >>
     else list2string(cadar a);
     princ"""";
     attributesML(cdr a, s);   
  >>;
end;

symbolic procedure list2string(a);
begin;
  if a neq nil then <<princ car a; list2string(cdr a)>>;
end;

symbolic procedure declareML( elem );
begin;
  printout("<declare");
  attributesML(car elem, "");
  indent!* t;
  multi_elem(cdr elem);
  indent!* nil;
  printout("</declare>")
end;

symbolic procedure lowupperlimitML( elem );
begin;
  printout("<lowlimit>");
  indent!* t;
  expression(cadr elem);
  indent!* nil;
  printout("</lowlimit>");
  printout("<uplimit>");
  indent!* t;
  expression(caddr elem);
  indent!* nil;
  printout("</uplimit>");
end;

symbolic procedure lowlimitML( elem );
begin;
  printout("<lowlimit>");
  indent!* t;
  expression(car elem);
  indent!* nil;
  printout("</lowlimit>");
end;


% Prints out quotients.

symbolic procedure quotientML( elem , tty);
begin;
  if (NUMBERP car elem) AND (NUMBERP cadr elem) then <<
     if !*web=nil then printout("<cn type=""rational""> ")
     else printout("<cn type=&quot;rational&quot;> ");
     princ car elem;
     princ " <sep/> ";
     princ cadr elem;
     princ " </cn>">> 
  else <<     
     printout( "<apply>" ); 
     princ "<"; princ tty; princ "/>";
     indent!* t;
     expression( cadr elem );
     expression( caddr elem );
     indent!* nil;
     printout( "</apply>" )>>;
end;

% Prints out all nary functions.

symbolic procedure nary( elem, type );
begin;
  if car elem = 'e AND type = 'power then unary(cdr elem, 'exp)
  else <<
    printout( "<apply>" );
    princ "<";
    princ type;
    attributesml(car elem, "/");
    indent!* t;
    multi_elem( cdr elem );
    indent!* nil;
    printout( "</apply>" )>>
end;

symbolic procedure multi_elem( elem );
begin;
   if ((length elem)=1) then expression( car elem )
       else <<expression car elem ; multi_elem( cdr elem );>>
end;


symbolic procedure minusML( elem );
begin;
  printout( "<apply><minus/>" );
  indent!* t;
  multiminus( cdr elem );
  indent!* nil;
  printout( "</apply>" );
end;  

symbolic procedure multiminus( elem );
begin;
  expression(car elem);
  if ((length elem)=2) then expression cadr elem;
end;

symbolic procedure ciML(elem);
begin;
  printout("<ci");
  attributesML(car elem, "");
  princ(cadr elem);
  princ("</ci>");
end;

symbolic procedure cnML(elem);
begin;
  printout("<cn");
  attributesML(car elem, "");
  princ(cadr elem);
  princ("</cn>");
end;

symbolic procedure semanticML(elem);
begin;
  if length elem > 1 then <<
    printout("<apply>");
    indent!* t;
    printout("<fn>");
    indent!* t;
  >>;
  printout("<semantic>");
  indent!* t;
  printout("<ci><mo>"); princ caar elem; princ "</mo></ci>";
  printout("<annotation-xml encoding=""OpenMath"">");
  indent!* t;
  printout"<"; list2string cadar elem; princ ">";
  indent!* nil;
  printout("</annotation-xml>");
  indent!* nil;
  printout("</semantic>");
  if length elem > 1 then <<
     indent!* nil;
     printout("</fn>");
     multi_elem(cdr elem);
     indent!* nil;
     printout("</apply>");
  >>;
end;

symbolic procedure numML(elem, type);
begin;
   if type='based_integer then <<
     printout "<cn type=""integer"" base="""; princ cadr elem; princ """> "; princ cadr caddr elem; princ " </cn>";
   >>;
   if type='complex_cartesian then <<
     printout "<cn type=""complex-cartesian""> "; princ cadr elem; princ " <sep/> "; princ caddr elem; princ " </cn>";
   >>;
   if type='complex_polar then <<
     printout "<cn type=""complex-polar""> "; princ cadr elem; princ " <sep/> "; princ caddr elem; princ " </cn>";
   >>;
     

end;

% Prints out all pieces of data: i.e terminal symbols.
% They can be numbers, identifiers, or constants.

symbolic procedure constsML(exp);
begin;
      if (NUMBERP exp) then 
		      << printout "<cn";
      		         if (FLOATP exp) then  princ " type=""real""> "
 			   else
		              if (FIXP exp) then princ " type=""integer""> "
				else princ "> ";
                         princ exp;
                         princ " </cn>">>;
         if (IDP exp) then  
		     <<  
                        if member(intern exp, constants!*) neq nil then
%                            <<printout "<cn type=""constant""> "; princ exp; princ " </cn>"; return nil>>
                            <<printout "<cn type=""constant""> "; princ exp; princ " </cn>">>
                        else << printout "<ci";
		         if (listp exp) then princ " type=""list""> "
			   else
		              if (vectorp exp) then princ " type=""vector""> "
				else princ "> ";
                         princ exp;
                         princ " </ci>">>; >>; 
end;

% Functions used to print out variables with a subscript.

% Prints out expressions in math form. Plagiarised from reduce code of
% mathprint

symbolic procedure ma_print l;
begin scalar temp;
   temp:=outputhandler!*;
   outputhandler!*:=nil;
   terpri!* nil;
   if !*web=nil then maprin "<cn type=""real"">"
   else maprin "<cn type=&quot;real&quot;>";
   maprin l;
   maprin "</cn>";
   terpri!* nil;
   outputhandler!*:=temp;
end;

% Function in charge of doing all printing in order to make sure the
% indentation is always correct.

symbolic procedure printout( str );
begin;
   if !*web = nil then terpri();
   if !*web = nil then for i := 1:indent
      do << princ " " >>;
   if PAIRP str then
    <<if car str='!:rd!: OR car str='!:rn!: then ma_print str     
    else princ str>>
   else princ str;
end;

lisp operator mml;
lisp operator mml2ir;
algebraic operator g_eq;
algebraic operator l_eq;
algebraic operator gt;
algebraic operator lt;
lisp operator plusRD;

symbolic procedure test();
begin scalar a;
  a:=mml2ir();
  terpri!* t;
  princ "Intermediate representation: "; 
  terpri!* t; 
  print a;
  ir2mml a;
end;


end;


REDUCE Historical
REDUCE Sourceforge Project | Historical SVN Repository | GitHub Mirror | SourceHut Mirror | NotABug Mirror | Chisel Mirror | Chisel RSS ]