Sun Jan 3 23:59:15 MET 1999
REDUCE 3.7, 15-Jan-99 ...
1: 1:
2: 2: 2: 2: 2: 2: 2: 2: 2:
3: 3: MATRIX M(3,3)$
M(1,1) := 18*COS(Q3)*COS(Q2)*M30*P**2 - 9*SIN(Q3)**2*P**2*M30
- SIN(Q3)**2*J30Y + SIN(Q3)**2*J30Z + P**2*M10
+ 18*P**2*M30 + J10Y + J30Y;
2 2 2
m(1,1) := 18*cos(q2)*cos(q3)*m30*p - sin(q3) *j30y + sin(q3) *j30z
2 2 2 2
- 9*sin(q3) *m30*p + j10y + j30y + m10*p + 18*m30*p
M(2,1) :=
M(1,2) := 9*COS(Q3)*COS(Q2)*M30*P**2 - SIN(Q3)**2*J30Y +
SIN(Q3)**2*J30Z - 9*SIN(Q3)**2*M30*P**2 + J30Y +
9*M30*P**2;
2 2 2
m(2,1) := m(1,2) := 9*cos(q2)*cos(q3)*m30*p - sin(q3) *j30y + sin(q3) *j30z
2 2 2
- 9*sin(q3) *m30*p + j30y + 9*m30*p
M(3,1) :=
M(1,3) := -9*SIN(Q3)*SIN(Q2)*M30*P**2;
2
m(3,1) := m(1,3) := - 9*sin(q2)*sin(q3)*m30*p
M(2,2) := -SIN(Q3)**2*J30Y + SIN(Q3)**2*J30Z - 9*SIN(Q3)**2
*M30*P**2 + J30Y + 9*M30*P**2;
2 2 2 2 2
m(2,2) := - sin(q3) *j30y + sin(q3) *j30z - 9*sin(q3) *m30*p + j30y + 9*m30*p
M(3,2) :=
M(2,3) := 0;
m(3,2) := m(2,3) := 0
M(3,3) := 9*M30*P**2 + J30X;
2
m(3,3) := j30x + 9*m30*p
GENTRANLANG!* := 'FORTRAN$
FORTLINELEN!* := 72$
GENTRAN LITERAL "C", CR!*,
"C", TAB!*, "*** COMPUTE VALUES FOR MATRIX M ***", CR!*,
"C", CR!*$
c
c *** compute values for matrix m ***
c
FOR j:=1:3 DO
FOR k:=j:3 DO
GENTRAN M(j,k) ::=: M(j,k)$
m(1,1)=18.0*cos(real(q2))*cos(real(q3))*m30*p**2-(sin(real(q3))**2
. *j30y)+sin(real(q3))**2*j30z-(9.0*sin(real(q3))**2*m30*p**2)+j10y
. +j30y+m10*p**2+18.0*m30*p**2
m(1,2)=9.0*cos(real(q2))*cos(real(q3))*m30*p**2-(sin(real(q3))**2*
. j30y)+sin(real(q3))**2*j30z-(9.0*sin(real(q3))**2*m30*p**2)+j30y+
. 9.0*m30*p**2
m(1,3)=-(9.0*sin(real(q2))*sin(real(q3))*m30*p**2)
m(2,2)=-(sin(real(q3))**2*j30y)+sin(real(q3))**2*j30z-(9.0*sin(
. real(q3))**2*m30*p**2)+j30y+9.0*m30*p**2
m(2,3)=0.0
m(3,3)=j30x+9.0*m30*p**2
GENTRAN LITERAL "C", CR!*,
"C", TAB!*, "*** COMPUTE VALUES FOR INVERSE MATRIX ***",
CR!*,
"C", CR!*$
c
c *** compute values for inverse matrix ***
c
SHARE var$
FOR j:=1:3 DO
FOR k:=j:3 DO
IF M(j,k) NEQ 0 THEN
<<
var := TEMPVAR NIL;
MARKVAR var;
M(j,k) := var;
M(k,j) := var;
GENTRAN
EVAL(var) := M(EVAL(j),EVAL(k))
>>$
t0=m(1,1)
t1=m(1,2)
t2=m(1,3)
t3=m(2,2)
t4=m(3,3)
COMMENT -- Contents of Matrix M: --$
M := M;
[t0 t1 t2]
[ ]
m := [t1 t3 0 ]
[ ]
[t2 0 t4]
MATRIX MXINV(3,3)$
MXINV := M**(-1)$
FOR j:=1:3 DO
FOR k:=j:3 DO
GENTRAN MXINV(j,k) ::=: MXINV(j,k)$
mxinv(1,1)=(t3*t4)/(t0*t3*t4-(t1**2*t4)-(t2**2*t3))
mxinv(1,2)=-(t1*t4)/(t0*t3*t4-(t1**2*t4)-(t2**2*t3))
mxinv(1,3)=-(t2*t3)/(t0*t3*t4-(t1**2*t4)-(t2**2*t3))
mxinv(2,2)=(t0*t4-t2**2)/(t0*t3*t4-(t1**2*t4)-(t2**2*t3))
mxinv(2,3)=(t1*t2)/(t0*t3*t4-(t1**2*t4)-(t2**2*t3))
mxinv(3,3)=(t0*t3-t1**2)/(t0*t3*t4-(t1**2*t4)-(t2**2*t3))
GENTRAN
for j:=1:3 do
for k:=j+1:3 do
<<
m(k,j) := m(j,k);
mxinv(k,j) := mxinv(j,k)
>>$
do 25001 j=1,3
do 25002 k=j+1,3
m(k,j)=m(j,k)
mxinv(k,j)=mxinv(j,k)
25002 continue
25001 continue
END$
4: 4: 4: 4: 4: 4: 4: 4: 4:
Time for test: 100 ms
5: 5:
Quitting
Sun Jan 3 23:59:21 MET 1999