<A NAME=gindependent_sets>
<TITLE>gindependent_sets</TITLE></A>
<b><a href=r37_idx.html>INDEX</a></b><p><p>
<B>GINDEPENDENT\_SETS</B> _ _ _ _ _ _ _ _ _ _ _ _ <B>operator</B><P>
<P>
<P>
<P>
<P> <H3>
syntax: </H3>
<em>gindependent_sets</em>(<bas>)
<P>
<P>
<P>
<P>
where <bas> is a
<A HREF=r37_0382.html>groebner</A> basis in any <em>term order</em>
(which must be the current <em>term order</em>) with the specified
variables (see
<A HREF=r37_0352.html>ideal parameters</A>).
<P>
<P>
<em>Gindependent_sets</em>computes the maximal
left independent variable sets of the ideal, that are
the variable sets which play the role of free parameters in the
current ideal basis. Each set is a list which is a subset of the
variable list. The result is a list of these sets. For an
ideal with dimension zero the list is empty.
The Kredel-Weispfenning algorithm is used.
<P>
<P>