<A NAME=DF>
<TITLE>DF</TITLE></A>
<b><a href=r37_idx.html>INDEX</a></b><p><p>
<B>DF</B> _ _ _ _ _ _ _ _ _ _ _ _ <B>operator</B><P>
<P>
<P>
<P>
The <em>df</em> operator finds partial derivatives with respect to one or
more variables.
<P>
<P>
<P> <H3>
syntax: </H3>
<em>df</em>(<expression><em>,</em><var>
[<em>,</em><number>]
{<em>,</em><var> [ <em>,</em><number>] } )
<P>
<P>
<P>
<expression> can be any valid REDUCE algebraic expression. <var>
must be a
<A HREF=r37_0002.html>kernel</A>, and is the differentiation variable.
<number> must be a non-negative integer.
<P>
<P>
<P> <H3>
examples: </H3>
<P><PRE><TT>
df(x**2,x);
2*X
df(x**2*y + sin(y),y);
2
COS(Y) + X
df((x+y)**10,z);
0
df(1/x**2,x,2);
6
---
4
X
df(x**4*y + sin(y),y,x,3);
24*X
for all x let df(tan(x),x) = sec(x)**2;
df(tan(3*x),x);
2
3*SEC(3*X)
</TT></PRE><P>An error message results if a non-kernel is entered as a different
iation
operator. If the optional number is omitted, it is assumed to be 1.
See the declaration
<A HREF=r37_0192.html>depend</A> to establish dependencies for implicit
differentiation.
<P>
<P>
You can define your own differentiation rules, expanding REDUCE's
capabilities, using the
<A HREF=r37_0199.html>let</A> command as shown in the last example
above. Note that once you add your own rule for differentiating a
function, it supersedes REDUCE's normal handling of that function for the
duration of the REDUCE session. If you clear the rule
(
<A HREF=r37_0190.html>clearrules</A>), you don't get back
to the previous rule.
<P>
<P>
<P>