File r37/packages/groebner/kredelw.red from the latest check-in


module kredelw; % Kredel Weispfenning algorithm. 

%   Author:     H.Melenk (ZIB Berlin)


fluid '(vdpsortmode!* !*groebopt !*gsugar);

symbolic procedure gdimension_eval u;
  begin integer n,m;
   for each s in cdr gindependent_seteval u
    do if (m:=length cdr s)>n then n:=m;
   return n;
  end;

put('gdimension,'psopfn,'gdimension_eval);
   
symbolic procedure gindependent_seteval pars;
% Independent set algorithm (Kredel/Weispfenning).
% parameters:
%     1      Groebner basis
%     2      optional: list of variables
   begin scalar vars,u,v,w,oldorder,!*factor,!*exp,!*gsugar,
            !*groebopt;
      !*exp := t;
      u := reval car pars;
      v := if cdr pars then reval cadr pars else nil;
      w := for each j in groerevlist u
              collect if eqexpr j then !*eqn2a j else j;
      if null w then rerror(groebnr2,3,"Empty list");
      vars :=  if null v then
                for each j in gvarlis w collect !*a2k j
            else  groerevlist v;
      if not vars then return '(list);
      oldorder := vdpinit vars;
      w:=for each j in w collect vdpevlmon a2vdp j;
      vars:=for each y in vars collect y.vdpevlmon a2vdp y;
      w:=groebkwprec(vars,nil,w,nil);
      return 'list. for each s in w collect
         'list. reversip for each x in s collect car x;
   end;

put('gindependent_sets,'psopfn,'gindependent_seteval);

symbolic procedure groebkwprec(vars,s,lt,m);
  % recursive Kredel Weispfennig algorithm.
  % vars: unprocessed variables,
  % s:    current subset of s,
  % lt:   leading term basis,
  % m:    collection of independent sets so far.
  % returns: updated m.
  begin scalar x,s1,bool;
    s1:=for each y in s collect cdr y;
    while vars do
    <<x:=car vars; vars:= cdr vars;
      if groebkwprec1(cdr x.s1,lt) then
         m:=groebkwprec(vars,x.s,lt,m);
    >>;
    bool:=t;
    for each y in m do % bool and not subsetp(s,y);
	bool:=bool and not(length s=length intersection(s,y));
    return if bool then s.m else m;
  end;

symbolic procedure groebkwprec1(s,lt);
  % t if intersection of T(s) and lt is empty.
   if null lt then t else
   groebkwprec2(s,car lt) and groebkwprec1(s,cdr lt);

symbolic procedure groebkwprec2(s,mon);
  % t if monomial not in T(s).
 <<for each m in s do mon:=vevcan0(m,mon); 
   not vevzero!? mon>>;

symbolic procedure vevcan0(m,mon);
  % divide multiples of m1 out of mon.
  if vevzero!? m then mon else
  if vevzero!? mon then nil else
  (if car m neq 0 then 0 else car mon).vevcan0(cdr m,cdr mon);

endmodule;

end;


REDUCE Historical
REDUCE Sourceforge Project | Historical SVN Repository | GitHub Mirror | SourceHut Mirror | NotABug Mirror | Chisel Mirror | Chisel RSS ]