File r37/doc/manual2/specfn.tex from the latest check-in


\chapter{SPECFN: Package for special functions}
\label{SPECFN}
\typeout{{SPECFN: Package for special functions}}

{\footnotesize
\begin{center}
Chris Cannam \& Winfried Neun \\
Konrad--Zuse--Zentrum f\"ur Informationstechnik Berlin \\
Takustra\"se 7 \\
D--14195 Berlin--Dahlem, Germany \\[0.05in]
e--mail: neun@zib.de
\end{center}
}
\ttindex{SPECFN}
\index{Orthogonal polynomials}

This package is designed to provide algebraic and numeric manipulations of
several common special functions, namely:

\begin{itemize}
\item Bernoulli Numbers and Polynomials;
\item Euler numbers and Polynomials;
\item Fibonacci numbers and Polynomials;
\item Stirling Numbers;
\item Binomial Coefficients;
\item Pochhammer notation;
\item The Gamma function;
\item The Psi function and its derivatives;
\item The Riemann Zeta function;
\item The Bessel functions J and Y of the first and second kinds;
\item The modified Bessel functions I and K;
\item The Hankel functions H1 and H2;
\item The Kummer hypergeometric functions M and U;
\item The Beta function, and Struve, Lommel and Whittaker functions;
\item The Airy functions;
\item The Exponential Integral, the Sine and Cosine Integrals;
\item The Hyperbolic Sine and Cosine Integrals;
\item The Fresnel Integrals and the Error function;
\item The Dilog function;
\item The Polylogarithm and Lerch Phi function;
\item Hermite Polynomials;
\item Jacobi Polynomials;
\item Legendre Polynomials;
\item Associated Legendre Functions (Spherical and Solid Harmonics);
\item Laguerre Polynomials;
\item Chebyshev Polynomials;
\item Gegenbauer Polynomials;
\item Lambert's $\omega$ function;
\item Jacobi Elliptic Functions and Integrals;
\item 3j symbols, 6j symbols and Clebsch Gordan coefficients;
\item and some well-known constants.
\end{itemize}



\section{Simplification and Approximation}

All of the operators supported by this package have certain algebraic
simplification rules to handle special cases, poles, derivatives and so
on.  Such rules are applied whenever they are appropriate.  However, if
the {\tt ROUNDED} switch is on, numeric evaluation is also carried out.
Unless otherwise stated below, the result of an application of a special
function operator to real or complex numeric arguments in rounded mode
will be approximated numerically whenever it is possible to do so.  All
approximations are to the current precision.

\section{Constants}
\ttindex{Euler\_Gamma}\ttindex{Khinchin}\ttindex{Golden\_Ratio}
\ttindex{Catalan}

Some well-known constants are defined in the special function package.
Important properties of these constants which can be used to define them
are also known.  Numerical values are computed at arbitrary precision
if the switch ROUNDED is on.

\begin{itemize}
\item Euler\_Gamma : Euler's constants, also available as -$\psi(1)$;
\item Catalan : Catalan's constant;
\item Khinchin : Khinchin's constant;
\item Golden\_Ratio : $\frac{1 + \sqrt{5}}{2}$ 
\end{itemize}

\section{Functions}

The functions provided by this package are given in the following
tables.

%%\index{Spherical and Solid Harmonics}\ttindex{SphericalHarmonicY}
%%\ttindex{SolidHarmonicY}
%%\ttindex{Jacobiamplitude}
%%\ttindex{JacobiZeta}

\begin{center}
\fbox{
\begin{tabular}{r l}\\
Function & Operator \\\\
%\hline 
$\left( { n \atop m } \right)$ & {\tt Binomial(n,m)}\ttindex{Binomial}\index{Binomial coefficients} \\
Motzkin($n$) & {\tt Motzkin(n)}\ttindex{Motzkin}\index{Motzkin} \\
Bernoulli($n$) or $ B_n $ & {\tt Bernoulli(n)}\ttindex{Bernoulli}\index{Bernoulli numbers} \\
Euler($n$) or $ E_n $ & {\tt Euler(n)}\ttindex{Euler}\index{Euler polynomials}  \\
Fibonacci($n$) or $ F_n $ & {\tt Fibonacci(n)}\ttindex{Fibonacci}\index{Fibonacci} \\
$S_n^{(m)}$ & {\tt Stirling1(n,m)}\ttindex{Stirling1}\index{Stirling numbers} \\
${\bf S}_n^{(m)}$ & {\tt Stirling2(n,m)}\ttindex{Stirling2} \\
$B(z,w)$ & {\tt Beta(z,w)}\ttindex{Beta}\index{Beta function} \\
$\Gamma(z)$ & {\tt Gamma(z)}\ttindex{Gamma}\index{Gamma function} \\
incomplete Beta $B_x(a,b)$ & {\tt iBeta(a,b,x)}\ttindex{iBeta}\index{incomplete Beta function} \\
incomplete Gamma $\Gamma(a,z)$ & {\tt iGamma(a,z)}\ttindex{iGamma}\index{incomplete Gamma function} \\
$(a)_k$ & {\tt Pochhammer(a,k)}\ttindex{Pochhammer}\index{Pochhammer's symbol} \\
$\psi(z)$ & {\tt Psi(z)}\ttindex{Psi}\index{Psi function}  \\
$\psi^{(n)}(z)$ & {\tt Polygamma(n,z)}\ttindex{Polygamma}\index{Polygamma functions} \\
Riemann's $\zeta(z)$ & {\tt Zeta(z)}\ttindex{Zeta}\index{Zeta function (Riemann's)} \\
$J_\nu(z)$ & {\tt BesselJ(nu,z)}\ttindex{BesselJ}\index{Bessel functions}\\
$Y_\nu(z)$ & {\tt BesselY(nu,z)}\ttindex{BesselY}\\
$I_\nu(z)$ & {\tt BesselI(nu,z)}\ttindex{BesselI}\\
$K_\nu(z)$ & {\tt BesselK(nu,z)}\ttindex{BesselK}\\
$H^{(1)}_\nu(z)$ & {\tt Hankel1(nu,z)}\ttindex{Hankel1}\index{Hankel functions}\\
$H^{(2)}_\nu(z)$ & {\tt Hankel2(nu,z)}\ttindex{Hankel2}\\
$B(z,w)$ & {\tt Beta(z,w)}\ttindex{Beta}\index{Beta function}\\
\end{tabular}}
\end{center}


\begin{center}
\fbox{
\begin{tabular}{r l}\\
Function & Operator \\\\
%\hline
${\bf H}_{\nu}(z)$ & {\tt StruveH(nu,z)}\ttindex{StruveH}\index{Struve functions}\\
${\bf L}_{\nu}(z)$ & {\tt StruveL(nu,z)}\ttindex{StruveL}\\
$s_{a,b}(z)$ & {\tt Lommel1(a,b,z)}\ttindex{Lommel1}\index{Lommel functions}\\
$S_{a,b}(z)$ & {\tt Lommel2(a,b,z)}\ttindex{Lommel2}\\
$Ai(z)$ & {\tt Airy\_Ai(z)}\ttindex{Airy\_Ai}\index{Airy functions}\\
$Bi(z)$ & {\tt Airy\_Bi(z)}\ttindex{Airy\_Bi}\\
$Ai'(z)$ & {\tt Airy\_Aiprime(z)}\ttindex{Airy\_Aiprime}\\
$Bi'(z)$ & {\tt Airy\_Biprime(z)}\ttindex{Airy\_Biprime}\\
$M(a, b, z)$ or $_1F_1(a, b; z)$ or $\Phi(a, b; z)$ &
{\tt KummerM(a,b,z)}\ttindex{KummerM}\index{Kummer functions} \\
$U(a, b, z)$ or $z^{-a}{_2F_0(a, b; z)}$ or $\Psi(a, b; z)$ &
{\tt KummerU(a,b,z)}\ttindex{KummerU}\\
$M_{\kappa,\mu}(z)$ & {\tt WhittakerM(kappa,mu,z)}\ttindex{WhittakerM}\index{Whittaker functions}\\
$W_{\kappa,\mu}(z)$ & {\tt WhittakerW(kappa,mu,z)}\ttindex{WhittakerW}\\
$B_n(x)$ & {\tt BernoulliP(n,x)}\ttindex{BernoulliP}\index{Bernoulli polynomials} \\
$E_n(x)$ & {\tt EulerP(n,x)}\ttindex{EulerP} \\
Fibonacci Polynomials $F_n(x)$ & {\tt FibonacciP(n,x)}\ttindex{FibonacciP}\index{Fibonacci polynomials} \\
$C_n^{(\alpha)}(x)$ & {\tt GegenbauerP(n,alpha,x)}\ttindex{GegenbauerP}\index{Gegenbauer polynomials}\\
$H_n(x)$ & {\tt HermiteP(n,x)}\ttindex{HermiteP}\index{Hermite polynomials} \\
$L_n(x)$ & {\tt LaguerreP(n,x)}\ttindex{LaguerreP}\index{Laguerre polynomials}\\
$L_n^{(m)}(x)$ & {\tt LaguerreP(n,m,x)}\ttindex{LaguerreP}\\
$P_n(x)$ & {\tt LegendreP(n,x)}\ttindex{LegendreP}\index{Legendre polynomials}\\
$P_n^{(m)}(x)$ & {\tt LegendreP(n,m,x)}\ttindex{LegendreP}\\
$P_n^{(\alpha,\beta)} (x)$ & {\tt JacobiP(n,alpha,beta,x)}\ttindex{JacobiP}\index{Jacobi's polynomials} \\
$U_n(x)$ & {\tt ChebyshevU(n,x)}\ttindex{ChebyshevU}\index{Chebyshev polynomials} \\
$T_n(x)$ & {\tt ChebyshevT(n,x)}\ttindex{ChebyshevT}\\
\end{tabular}}
\end{center}


\begin{center}
\fbox{
\begin{tabular}{r l}\\
Function & Operator \\\\
%\hline
$Y_n^{m}(x,y,z,r2)$ & {\tt SolidHarmonicY(n,m,x,y,z,r2)}\ttindex{SolidHarmonicY}\\
$Y_n^{m}(\theta,\phi)$ & {\tt SphericalHarmonicY(n,m,theta,phi)}\ttindex{SphericalHarmonicY}\\
$\left( {j_1 \atop m_1} {j_2 \atop m_2}
 {j_3 \atop m_3} \right)$ & {\tt ThreeJSymbol(\{j1,m1\},\{j2,m2\},\{j3,m3\})}\ttindex{ThreeJSymbol}\index{3j and 6j symbols}\\
$\left( {j_1m_1j_2m_2 | j_1j_2j_3 - m_3} \right)$ &
{\tt Clebsch\_Gordan(\{j1,m1\},\{j2,m2\},\{j3,m3\})}\ttindex{Clebsch\_Gordan}\index{Clebsch Gordan coefficients}\\
$\left\{ {j_1 \atop l_1} {j_2 \atop l_2}
 {j_3 \atop l_3} \right\}$  & {\tt SixJSymbol(\{j1,j2,j3\},\{l1,l2,l3\})}\ttindex{SixJSymbol}\\
\end{tabular}}
\end{center}


\begin{center}
\fbox{
\begin{tabular}{r l}\\
Function & Operator \\\\
%\hline
$Si(z)$ & {\tt Si(z) }\ttindex{Si}\\
$si(z)$ & {\tt s\_i(z) }\ttindex{s\_i}\\
$Ci(z)$ & {\tt Ci(z) }\ttindex{Ci}\\
$Shi(z)$ & {\tt Shi(z) }\ttindex{Shi}\\
$Chi(z)$ & {\tt Chi(z) }\ttindex{Chi}\\
$erf(z)$ & {\tt erf(z) }\ttindex{erf}\\
$erfc(z)$ & {\tt erfc(z) }\ttindex{erfc}\\
$Ei(z)$ & {\tt Ei(z) }\ttindex{Ei}\\
$li(z)$ & {\tt li(z) }\ttindex{li}\\
$C(x)$ & {\tt Fresnel\_C(x)}\ttindex{Fresnel\_C} \\
$S(x)$ & {\tt Fresnel\_S(x)}\ttindex{Fresnel\_S} \\
\\
$dilog(z)$ & {\tt dilog(z)}\ttindex{dilog}\index{Dilogarithm function} \\
$Li_n(z)$ & {\tt Polylog(n,z)}\ttindex{Polylog}\index{Polylogarithm function} \\
Lerch $\Phi(z,s,a)$ & {\tt Lerch\_Phi(z,s,a)}\ttindex{Lerch\_Phi}\index{Lerch Phi function} \\
\\
$sn(u|m)$ & {\tt Jacobisn(u,m)}\ttindex{Jacobisn}\index{Jacobi Elliptic Functions and {Integrals}}\\
$dn(u|m)$ & {\tt Jacobidn(u,m)}\ttindex{Jacobidn}\\
$cn(u|m)$ & {\tt Jacobicn(u,m)}\ttindex{Jacobicn}\\
$cd(u|m)$ & {\tt Jacobicd(u,m)}\ttindex{Jacobicd}\\
$sd(u|m)$ & {\tt Jacobisd(u,m)}\ttindex{Jacobisd}\\
$nd(u|m)$ & {\tt Jacobind(u,m)}\ttindex{Jacobind}\\
$dc(u|m)$ & {\tt Jacobidc(u,m)}\ttindex{Jacobidc}\\
$nc(u|m)$ & {\tt Jacobinc(u,m)}\ttindex{Jacobinc}\\
$sc(u|m)$ & {\tt Jacobisc(u,m)}\ttindex{Jacobisc}\\
$ns(u|m)$ & {\tt Jacobins(u,m)}\ttindex{Jacobins}\\
$ds(u|m)$ & {\tt Jacobids(u,m)}\ttindex{Jacobids}\\
$cs(u|m)$ & {\tt Jacobics(u,m)}\ttindex{Jacobics}\\
$F(\phi|m)$ & {\tt EllipticF(phi,m)}\ttindex{EllipticF}\\
$K(m)$ & {\tt EllipticK(m)}\ttindex{EllipticK}\\
$E(\phi|m) or E(m)$ & {\tt EllipticE(phi,m) or}\\
~      & {\tt EllipticE(m)}\ttindex{EllipticE}\\
$H(u|m), H_1(u|m), \Theta_1(u|m), \Theta(u|m)$ & {\tt EllipticTheta(a,u,m)}\ttindex{EllipticTheta}\\
$\theta_1(u|m), \theta_2(u|m), \theta_3(u|m), \theta_4(u|m)$
   & {\tt EllipticTheta(a,u,m)}\ttindex{EllipticTheta}\\
$Z(u|m)$ & {\tt Zeta\_function(u,m)}\ttindex{Zeta\_function} \\
\\
Lambert $\omega(z)$ & {\tt Lambert\_W(z)}\ttindex{Lambert\_W}\index{Lambert $\omega$ function}
\end{tabular}}
\end{center}
 


REDUCE Historical
REDUCE Sourceforge Project | Historical SVN Repository | GitHub Mirror | SourceHut Mirror | NotABug Mirror | Chisel Mirror | Chisel RSS ]