/* arith11.c Copyright (C) 1990-95 Codemist Ltd */
/*
* Arithmetic functions.
* remainder, =,
* minusp, plusp
*
* Version 1.4 November 1990.
*/
/* Signature: 3391041c 07-Mar-2000 */
#include <stdarg.h>
#include <string.h>
#include <ctype.h>
#include <math.h>
#include "machine.h"
#include "tags.h"
#include "cslerror.h"
#include "externs.h"
#include "arith.h"
#ifdef TIMEOUT
#include "timeout.h"
#endif
Lisp_Object rembi(Lisp_Object a, Lisp_Object b)
{
Lisp_Object nil;
if (b == fixnum_of_int(0)) return aerror2("bad arg for remainder", a, b);
else if (b == fixnum_of_int(1) ||
b == fixnum_of_int(-1)) return fixnum_of_int(0);
quotbn1(a, int_of_fixnum(b));
/*
* If the divisor was a fixnum then the remainder will be a fixnum too.
*/
errexit();
return fixnum_of_int(nwork);
}
Lisp_Object rembb(Lisp_Object a, Lisp_Object b)
{
Lisp_Object nil;
quotbb(a, b);
errexit();
return mv_2;
}
#ifdef COMMON
static Lisp_Object remis(Lisp_Object a, Lisp_Object b)
{
return aerror2("bad arg for remainder", a, b);
}
static Lisp_Object remir(Lisp_Object a, Lisp_Object b)
{
return aerror2("bad arg for remainder", a, b);
}
static Lisp_Object remif(Lisp_Object a, Lisp_Object b)
{
return aerror2("bad arg for remainder", a, b);
}
static Lisp_Object remsi(Lisp_Object a, Lisp_Object b)
{
return aerror2("bad arg for remainder", a, b);
}
static Lisp_Object remsb(Lisp_Object a, Lisp_Object b)
{
return aerror2("bad arg for remainder", a, b);
}
static Lisp_Object remsr(Lisp_Object a, Lisp_Object b)
{
return aerror2("bad arg for remainder", a, b);
}
static Lisp_Object remsf(Lisp_Object a, Lisp_Object b)
{
return aerror2("bad arg for remainder", a, b);
}
static Lisp_Object rembs(Lisp_Object a, Lisp_Object b)
{
return aerror2("bad arg for remainder", a, b);
}
static Lisp_Object rembr(Lisp_Object a, Lisp_Object b)
{
return aerror2("bad arg for remainder", a, b);
}
static Lisp_Object rembf(Lisp_Object a, Lisp_Object b)
{
return aerror2("bad arg for remainder", a, b);
}
static Lisp_Object remri(Lisp_Object a, Lisp_Object b)
{
return aerror2("bad arg for remainder", a, b);
}
static Lisp_Object remrs(Lisp_Object a, Lisp_Object b)
{
return aerror2("bad arg for remainder", a, b);
}
static Lisp_Object remrb(Lisp_Object a, Lisp_Object b)
{
return aerror2("bad arg for remainder", a, b);
}
static Lisp_Object remrr(Lisp_Object a, Lisp_Object b)
{
return aerror2("bad arg for remainder", a, b);
}
static Lisp_Object remrf(Lisp_Object a, Lisp_Object b)
{
return aerror2("bad arg for remainder", a, b);
}
static Lisp_Object remfi(Lisp_Object a, Lisp_Object b)
{
return aerror2("bad arg for remainder", a, b);
}
static Lisp_Object remfs(Lisp_Object a, Lisp_Object b)
{
return aerror2("bad arg for remainder", a, b);
}
static Lisp_Object remfb(Lisp_Object a, Lisp_Object b)
{
return aerror2("bad arg for remainder", a, b);
}
static Lisp_Object remfr(Lisp_Object a, Lisp_Object b)
{
return aerror2("bad arg for remainder", a, b);
}
static Lisp_Object remff(Lisp_Object a, Lisp_Object b)
{
return aerror2("bad arg for remainder", a, b);
}
#endif /* COMMON */
Lisp_Object Cremainder(Lisp_Object a, Lisp_Object b)
{
int32 c;
switch ((int)a & TAG_BITS)
{
case TAG_FIXNUM:
switch ((int)b & TAG_BITS)
{
case TAG_FIXNUM:
/*
* This is where fixnum % fixnum arithmetic happens - the case I most want to
* make efficient.
*/
if (b == fixnum_of_int(0))
return aerror2("bad arg for remainder", a, b);
/* No overflow is possible in a remaindering operation */
{ int32 aa = int_of_fixnum(a);
int32 bb = int_of_fixnum(b);
c = aa % bb;
/*
* C does not specify just what happens when % is used with negative
* operands (except maybe if the division went exactly), so here I do
* some adjusting, assuming that the quotient returned was one of the
* integral values surrounding the exact result.
*/
if (aa < 0)
{ if (c > 0) c -= bb;
}
else if (c < 0) c += bb;
return fixnum_of_int(c);
}
#ifdef COMMON
/*
* Common Lisp defines a meaning for the remainder function when applied
* to floating point values - so there is a whole pile of mess here to
* support that. Standard Lisp is only concerned with fixnums and
* bignums.
*/
case TAG_SFLOAT:
return remis(a, b);
#endif
case TAG_NUMBERS:
{ int32 hb = type_of_header(numhdr(b));
switch (hb)
{
case TYPE_BIGNUM:
/*
* When I divide a fixnum a by a bignum b the remainder is a except in
* the case that a = 0xf8000000 and b = 0x08000000 in which case the
* answer is zero.
*/
if (int_of_fixnum(a) == fix_mask &&
bignum_length(b) == 8 &&
bignum_digits(b)[0] == 0x08000000)
return fixnum_of_int(0);
else return a;
#ifdef COMMON
case TYPE_RATNUM:
return remir(a, b);
#endif
default:
return aerror1("Bad arg for remainder", b);
}
}
#ifdef COMMON
case TAG_BOXFLOAT:
return remif(a, b);
#else
case TAG_BOXFLOAT:
{ double v = (double) int_of_fixnum(a);
double u = float_of_number(b);
v = v - (v/u)*u;
return make_boxfloat(v, TYPE_DOUBLE_FLOAT);
}
#endif
default:
return aerror1("Bad arg for remainder", b);
}
#ifdef COMMON
case TAG_SFLOAT:
switch ((int)b & TAG_BITS)
{
case TAG_FIXNUM:
return remsi(a, b);
case TAG_SFLOAT:
{ Float_union aa, bb;
aa.i = a - TAG_SFLOAT;
bb.i = b - TAG_SFLOAT;
aa.f = (float) (aa.f + bb.f);
return (aa.i & ~(int32)0xf) + TAG_SFLOAT;
}
case TAG_NUMBERS:
{ int32 hb = type_of_header(numhdr(b));
switch (hb)
{
case TYPE_BIGNUM:
return remsb(a, b);
case TYPE_RATNUM:
return remsr(a, b);
default:
return aerror1("Bad arg for remainder", b);
}
}
case TAG_BOXFLOAT:
return remsf(a, b);
default:
return aerror1("Bad arg for remainder", b);
}
#endif
case TAG_NUMBERS:
{ int32 ha = type_of_header(numhdr(a));
switch (ha)
{
case TYPE_BIGNUM:
switch ((int)b & TAG_BITS)
{
case TAG_FIXNUM:
return rembi(a, b);
#ifdef COMMON
case TAG_SFLOAT:
return rembs(a, b);
#endif
case TAG_NUMBERS:
{ int32 hb = type_of_header(numhdr(b));
switch (hb)
{
case TYPE_BIGNUM:
return rembb(a, b);
#ifdef COMMON
case TYPE_RATNUM:
return rembr(a, b);
#endif
default:
return aerror1("Bad arg for remainder", b);
}
}
#ifdef COMMON
case TAG_BOXFLOAT:
return rembf(a, b);
#endif
default:
return aerror1("Bad arg for remainder", b);
}
#ifdef COMMON
case TYPE_RATNUM:
switch ((int)b & TAG_BITS)
{
case TAG_FIXNUM:
return remri(a, b);
case TAG_SFLOAT:
return remrs(a, b);
case TAG_NUMBERS:
{ int32 hb = type_of_header(numhdr(b));
switch (hb)
{
case TYPE_BIGNUM:
return remrb(a, b);
case TYPE_RATNUM:
return remrr(a, b);
default:
return aerror1("Bad arg for remainder", b);
}
}
case TAG_BOXFLOAT:
return remrf(a, b);
default:
return aerror1("Bad arg for remainder", b);
}
#endif
default: return aerror1("Bad arg for remainder", a);
}
}
case TAG_BOXFLOAT:
switch ((int)b & TAG_BITS)
{
#ifndef COMMON
case TAG_FIXNUM:
{ double u = (double) int_of_fixnum(b);
double v = float_of_number(a);
v = v - (v/u)*u;
return make_boxfloat(v, TYPE_DOUBLE_FLOAT);
}
case TAG_BOXFLOAT:
{ double u = float_of_number(b);
double v = float_of_number(a);
v = v - (v/u)*u;
return make_boxfloat(v, TYPE_DOUBLE_FLOAT);
}
default:
return aerror1("Bad arg for remainder", b);
#else
case TAG_FIXNUM:
return remfi(a, b);
case TAG_SFLOAT:
return remfs(a, b);
case TAG_NUMBERS:
{ int32 hb = type_of_header(numhdr(b));
switch (hb)
{
case TYPE_BIGNUM:
return remfb(a, b);
case TYPE_RATNUM:
return remfr(a, b);
default:
return aerror1("Bad arg for remainder", b);
}
}
case TAG_BOXFLOAT:
return remff(a, b);
default:
return aerror1("Bad arg for remainder", b);
#endif
}
default:
return aerror1("Bad arg for remainder", a);
}
}
/*
* In the cases that I expect to be most speed-critical I will
* implement "mod" directly. But in a load of other cases I will just
* activate the existing "remainder" code and then make a few final
* adjustments. This MAY lead to error messages (on modulus by zero)
* mentioning remainder rather than mod....
* I will leave in the whole structure of separate functions for each
* case since that will be useful if I ever need to come back here and
* fine-tune more of the type-combinations. As a first pass I give
* special treatment to (fixnum,fixnum) and (bignum,fixnum)
*/
static Lisp_Object mod_by_rem(Lisp_Object a, Lisp_Object b)
{
Lisp_Object nil;
CSLbool sb = minusp(b);
errexit();
a = Cremainder(a, b); /* Repeats dispatch on argument type. Sorry */
errexit();
if (sb)
{ if (plusp(a))
{ errexit();
a = plus2(a, b);
}
}
else if (minusp(a))
{ errexit();
a = plus2(a, b);
}
return a;
}
static Lisp_Object modib(Lisp_Object a, Lisp_Object b)
{
return mod_by_rem(a, b);
}
static Lisp_Object modbi(Lisp_Object a, Lisp_Object b)
{
Lisp_Object nil = C_nil;
int32 bb = int_of_fixnum(b);
if (b == fixnum_of_int(0)) return aerror2("bad arg for mod", a, b);
if (bb == 1 || bb == -1) nwork = 0;
else quotbn1(a, bb);
/*
* If the divisor was a fixnum then the remainder will be a fixnum too.
*/
errexit();
if (bb < 0)
{ if (nwork > 0) nwork += bb;
}
else if (nwork < 0) nwork += bb;
return fixnum_of_int(nwork);
}
static Lisp_Object modbb(Lisp_Object a, Lisp_Object b)
{
return mod_by_rem(a, b);
}
#ifdef COMMON
static Lisp_Object modis(Lisp_Object a, Lisp_Object b)
{
return mod_by_rem(a, b);
}
static Lisp_Object modir(Lisp_Object a, Lisp_Object b)
{
return mod_by_rem(a, b);
}
static Lisp_Object modif(Lisp_Object a, Lisp_Object b)
{
return mod_by_rem(a, b);
}
static Lisp_Object modsi(Lisp_Object a, Lisp_Object b)
{
return mod_by_rem(a, b);
}
static Lisp_Object modsb(Lisp_Object a, Lisp_Object b)
{
return mod_by_rem(a, b);
}
static Lisp_Object modsr(Lisp_Object a, Lisp_Object b)
{
return mod_by_rem(a, b);
}
static Lisp_Object modsf(Lisp_Object a, Lisp_Object b)
{
return mod_by_rem(a, b);
}
static Lisp_Object modbs(Lisp_Object a, Lisp_Object b)
{
return mod_by_rem(a, b);
}
static Lisp_Object modbr(Lisp_Object a, Lisp_Object b)
{
return mod_by_rem(a, b);
}
static Lisp_Object modbf(Lisp_Object a, Lisp_Object b)
{
return mod_by_rem(a, b);
}
static Lisp_Object modri(Lisp_Object a, Lisp_Object b)
{
return mod_by_rem(a, b);
}
static Lisp_Object modrs(Lisp_Object a, Lisp_Object b)
{
return mod_by_rem(a, b);
}
static Lisp_Object modrb(Lisp_Object a, Lisp_Object b)
{
return mod_by_rem(a, b);
}
static Lisp_Object modrr(Lisp_Object a, Lisp_Object b)
{
return mod_by_rem(a, b);
}
static Lisp_Object modrf(Lisp_Object a, Lisp_Object b)
{
return mod_by_rem(a, b);
}
static Lisp_Object modfi(Lisp_Object a, Lisp_Object b)
{
return mod_by_rem(a, b);
}
static Lisp_Object modfs(Lisp_Object a, Lisp_Object b)
{
return mod_by_rem(a, b);
}
static Lisp_Object modfb(Lisp_Object a, Lisp_Object b)
{
return mod_by_rem(a, b);
}
static Lisp_Object modfr(Lisp_Object a, Lisp_Object b)
{
return mod_by_rem(a, b);
}
static Lisp_Object ccl_modff(Lisp_Object a, Lisp_Object b)
{
return mod_by_rem(a, b);
}
#endif /* COMMON */
Lisp_Object modulus(Lisp_Object a, Lisp_Object b)
{
switch ((int)a & TAG_BITS)
{
case TAG_FIXNUM:
switch ((int)b & TAG_BITS)
{
case TAG_FIXNUM:
/*
* This is where fixnum % fixnum arithmetic happens - the case I most want to
* make efficient.
*/
{ int32 p = int_of_fixnum(a);
int32 q = int_of_fixnum(b);
if (q == 0) return aerror2("bad arg for mod", a, b);
p = p % q;
if (q < 0)
{ if (p > 0) p += q;
}
else if (p < 0) p += q;
/* No overflow is possible in a modulus operation */
return fixnum_of_int(p);
}
#ifdef COMMON
/*
* Common Lisp defines a meaning for the modulus function when applied
* to floating point values - so there is a whole pile of mess here to
* support that. Standard Lisp is only concerned with fixnums and
* bignums.
*/
case TAG_SFLOAT:
return modis(a, b);
#endif
case TAG_NUMBERS:
{ int32 hb = type_of_header(numhdr(b));
switch (hb)
{
case TYPE_BIGNUM:
return modib(a, b);
#ifdef COMMON
case TYPE_RATNUM:
return modir(a, b);
#endif
default:
return aerror1("Bad arg for mod", b);
}
}
#ifdef COMMON
case TAG_BOXFLOAT:
return modif(a, b);
#endif
default:
return aerror1("Bad arg for mod", b);
}
#ifdef COMMON
case TAG_SFLOAT:
switch ((int)b & TAG_BITS)
{
case TAG_FIXNUM:
return modsi(a, b);
case TAG_SFLOAT:
{ Float_union aa, bb;
aa.i = a - TAG_SFLOAT;
bb.i = b - TAG_SFLOAT;
aa.f = (float) (aa.f + bb.f);
return (aa.i & ~(int32)0xf) + TAG_SFLOAT;
}
case TAG_NUMBERS:
{ int32 hb = type_of_header(numhdr(b));
switch (hb)
{
case TYPE_BIGNUM:
return modsb(a, b);
case TYPE_RATNUM:
return modsr(a, b);
default:
return aerror1("Bad arg for mod", b);
}
}
case TAG_BOXFLOAT:
return modsf(a, b);
default:
return aerror1("Bad arg for mod", b);
}
#endif
case TAG_NUMBERS:
{ int32 ha = type_of_header(numhdr(a));
switch (ha)
{
case TYPE_BIGNUM:
switch ((int)b & TAG_BITS)
{
case TAG_FIXNUM:
return modbi(a, b);
#ifdef COMMON
case TAG_SFLOAT:
return modbs(a, b);
#endif
case TAG_NUMBERS:
{ int32 hb = type_of_header(numhdr(b));
switch (hb)
{
case TYPE_BIGNUM:
return modbb(a, b);
#ifdef COMMON
case TYPE_RATNUM:
return modbr(a, b);
#endif
default:
return aerror1("Bad arg for mod", b);
}
}
#ifdef COMMON
case TAG_BOXFLOAT:
return modbf(a, b);
#endif
default:
return aerror1("Bad arg for mod", b);
}
#ifdef COMMON
case TYPE_RATNUM:
switch ((int)b & TAG_BITS)
{
case TAG_FIXNUM:
return modri(a, b);
case TAG_SFLOAT:
return modrs(a, b);
case TAG_NUMBERS:
{ int32 hb = type_of_header(numhdr(b));
switch (hb)
{
case TYPE_BIGNUM:
return modrb(a, b);
case TYPE_RATNUM:
return modrr(a, b);
default:
return aerror1("Bad arg for mod", b);
}
}
case TAG_BOXFLOAT:
return modrf(a, b);
default:
return aerror1("Bad arg for mod", b);
}
#endif
default: return aerror1("Bad arg for mod", a);
}
}
#ifdef COMMON
case TAG_BOXFLOAT:
switch ((int)b & TAG_BITS)
{
case TAG_FIXNUM:
return modfi(a, b);
case TAG_SFLOAT:
return modfs(a, b);
case TAG_NUMBERS:
{ int32 hb = type_of_header(numhdr(b));
switch (hb)
{
case TYPE_BIGNUM:
return modfb(a, b);
case TYPE_RATNUM:
return modfr(a, b);
default:
return aerror1("Bad arg for mod", b);
}
}
case TAG_BOXFLOAT:
return ccl_modff(a, b);
default:
return aerror1("Bad arg for mod", b);
}
#endif
default:
return aerror1("Bad arg for mod", a);
}
}
CSLbool zerop(Lisp_Object a)
{
switch ((int)a & TAG_BITS)
{
case TAG_FIXNUM:
return (a == fixnum_of_int(0));
#ifdef COMMON
case TAG_NUMBERS:
/* #C(r i) must satisfy zerop is r and i both do */
if (is_complex(a) && zerop(real_part(a)))
return zerop(imag_part(a));
else return NO;
case TAG_SFLOAT:
/*
* The code here assumes that the the floating point number zero
* is represented by a zero bit-pattern... see onep() for a more
* cautious way of coding things.
*/
return ((a & 0x7ffffff8) == 0); /* Strip sign bit as well as tags */
#endif
case TAG_BOXFLOAT:
return (float_of_number(a) == 0.0);
default:
return NO;
}
}
CSLbool onep(Lisp_Object a)
{
switch ((int)a & TAG_BITS)
{
case TAG_FIXNUM:
return (a == fixnum_of_int(1));
#ifdef COMMON
case TAG_NUMBERS:
/* #C(r i) must satisfy onep(r) and zerop(i) */
if (is_complex(a) && onep(real_part(a)))
return zerop(imag_part(a));
else return NO;
case TAG_SFLOAT:
{ Float_union w;
w.f = (float)1.0;
return (a == (w.i & ~(int32)0xf) + TAG_SFLOAT);
}
#endif
case TAG_BOXFLOAT:
return (float_of_number(a) == 1.0);
default:
return NO;
}
}
/*
* sign testing
*/
CSLbool minusp(Lisp_Object a)
{
switch ((int)a & TAG_BITS)
{
case TAG_FIXNUM:
return ((int32)a < 0);
#ifdef COMMON
case TAG_SFLOAT:
{ Float_union aa;
aa.i = a - TAG_SFLOAT;
return (aa.f < 0.0);
}
#endif
case TAG_NUMBERS:
{ int32 ha = type_of_header(numhdr(a));
switch (ha)
{
case TYPE_BIGNUM:
{ int32 l = (bignum_length(a) >> 2) - 2;
return ((int32)bignum_digits(a)[l] < (int32)0);
}
#ifdef COMMON
case TYPE_RATNUM:
return minusp(numerator(a));
#endif
default:
aerror1("Bad arg for minusp", a);
return 0;
}
}
case TAG_BOXFLOAT:
{ double d = float_of_number(a);
return (d < 0.0);
}
default:
aerror1("Bad arg for minusp", a);
return 0;
}
}
CSLbool plusp(Lisp_Object a)
{
switch ((int)a & TAG_BITS)
{
case TAG_FIXNUM:
return (a > fixnum_of_int(0));
#ifdef COMMON
case TAG_SFLOAT:
{ Float_union aa;
aa.i = a - TAG_SFLOAT;
return (aa.f > 0.0);
}
#endif
case TAG_NUMBERS:
{ int32 ha = type_of_header(numhdr(a));
switch (ha)
{
case TYPE_BIGNUM:
{ int32 l = (bignum_length(a) >> 2) - 2;
/* This is OK because a bignum can never have the value zero */
return ((int32)bignum_digits(a)[l] >= (int32)0);
}
#ifdef COMMON
case TYPE_RATNUM:
return plusp(numerator(a));
#endif
default:
aerror1("Bad arg for plusp", a);
return 0;
}
}
case TAG_BOXFLOAT:
{ double d = float_of_number(a);
return (d > 0.0);
}
default:
aerror1("Bad arg for plusp", a);
return 0;
}
}
/*
* Numeric equality - note that comparisons involving non-numbers
* are errors here (unlike the position in eql, equal, equalp). Also
* this must be coded so that it never provokes garbage collection.
*/
#ifdef COMMON
static CSLbool numeqis(Lisp_Object a, Lisp_Object b)
{
Float_union bb;
bb.i = b - TAG_SFLOAT;
return ((double)int_of_fixnum(a) == (double)bb.f);
}
static CSLbool numeqic(Lisp_Object a, Lisp_Object b)
{
if (!zerop(imag_part(b))) return NO;
else return numeq2(a, real_part(b));
}
#endif
#define numeqif(a,b) ((double)int_of_fixnum(a) == float_of_number(b))
#ifdef COMMON
#define numeqsi(a, b) numeqis(b, a)
#endif
static CSLbool numeqsb(Lisp_Object a, Lisp_Object b)
/*
* This is coded to allow comparison of any floating type
* with a bignum
*/
{
double d = float_of_number(a), d1;
int x;
int32 w, len;
unsigned32 u;
if (-1.0e8 < d && d < 1.0e8) return NO; /* fixnum range (approx) */
len = (bignum_length(b) >> 2) - 2;
if (len == 0) /* One word bignums can be treated specially */
{ int32 v = bignum_digits(b)[0];
return (d == (double)v);
}
d1 = frexp(d, &x); /* separate exponent from mantissa */
if (d1 == 1.0) d1 = 0.5, x++; /* For Zortech */
/* The exponent x must be positive here, hence the % operation is defined */
d1 = ldexp(d1, x % 31);
/*
* At most 3 words in the bignum may contain nonzero data - I subtract
* the (double) value of those bits off and check that (a) the floating
* result left is zero and (b) there are no more bits left.
*/
x = x / 31;
if (x != len) return NO;
w = bignum_digits(b)[len];
d1 = (d1 - (double)w) * TWO_31;
u = bignum_digits(b)[--len];
d1 = (d1 - (double)u) * TWO_31;
if (len > 0)
{ u = bignum_digits(b)[--len];
d1 = d1 - (double)u;
}
if (d1 != 0.0) return NO;
while (--len >= 0)
if (bignum_digits(b)[len] != 0) return NO;
return YES;
}
#ifdef COMMON
static CSLbool numeqsr(Lisp_Object a, Lisp_Object b)
/*
* Here I will rely somewhat on the use of IEEE floating point values
* (an in particular the weaker supposition that I have floating point
* with a binary radix). Then for equality the denominator of b must
* be a power of 2, which I can test for and then account for.
*/
{
Lisp_Object nb = numerator(b), db = denominator(b);
double d = float_of_number(a), d1;
int x;
int32 dx, w, len;
unsigned32 u, bit;
/*
* first I will check that db (which will be positive) is a power of 2,
* and set dx to indicate what power of two it is.
* Note that db != 0 and that one of the top two words of a bignum
* must be nonzero (for normalisation) so I end up with a nonzero
* value in the variable 'bit'
*/
if (is_fixnum(db))
{ bit = int_of_fixnum(db);
w = bit;
if (w != (w & (-w))) return NO; /* not a power of 2 */
dx = 0;
}
else if (is_numbers(db) && is_bignum(db))
{ int32 lenb = (bignum_length(db) >> 2) - 2;
bit = bignum_digits(db)[lenb];
/*
* I need to cope with bignums where the leading digits is zero because
* the 0x80000000 bit of the next word down is 1. To do this I treat
* the number as having one fewer digits.
*/
if (bit == 0) bit = bignum_digits(db)[--lenb];
w = bit;
if (w != (w & (-w))) return NO; /* not a power of 2 */
dx = 31*lenb;
while (--lenb >= 0) /* check that the rest of db is zero */
if (bignum_digits(db)[lenb] != 0) return NO;
}
else return NO; /* Odd - what type IS db here? Maybe error. */
if ((bit & 0xffffU) == 0) dx += 16, bit = bit >> 16;
if ((bit & 0xff) == 0) dx += 8, bit = bit >> 8;
if ((bit & 0xf) == 0) dx += 4, bit = bit >> 4;
if ((bit & 0x3) == 0) dx += 2, bit = bit >> 2;
if ((bit & 0x1) == 0) dx += 1;
if (is_fixnum(nb))
{ double d1 = (double)int_of_fixnum(nb);
/*
* The ldexp on the next line could potentially underflow. In that case C
* defines that the result 0.0 be returned. To avoid trouble I put in a
* special test the relies on that fact that a value represented as a rational
* would not have been zero.
*/
if (dx > 10000) return NO; /* Avoid gross underflow */
d1 = ldexp(d1, (int)-dx);
return (d == d1 && d != 0.0);
}
len = (bignum_length(nb) >> 2) - 2;
if (len == 0) /* One word bignums can be treated specially */
{ int32 v = bignum_digits(nb)[0];
double d1;
if (dx > 10000) return NO; /* Avoid gross underflow */
d1 = ldexp((double)v, (int)-dx);
return (d == d1 && d != 0.0);
}
d1 = frexp(d, &x); /* separate exponent from mantissa */
if (d1 == 1.0) d1 = 0.5, x++; /* For Zortech */
dx += x; /* adjust to allow for the denominator */
d1 = ldexp(d1, (int)(dx % 31));
/* can neither underflow nor overflow here */
/*
* At most 3 words in the bignum may contain nonzero data - I subtract
* the (double) value of those bits off and check that (a) the floating
* result left is zero and (b) there are no more bits left.
*/
dx = dx / 31;
if (dx != len) return NO;
w = bignum_digits(nb)[len];
d1 = (d1 - (double)w) * TWO_31;
u = bignum_digits(nb)[--len];
d1 = (d1 - (double)u) * TWO_31;
if (len > 0)
{ u = bignum_digits(nb)[--len];
d1 = d1 - (double)u;
}
if (d1 != 0.0) return NO;
while (--len >= 0)
if (bignum_digits(nb)[len] != 0) return NO;
return YES;
}
#define numeqsc(a, b) numeqic(a, b)
static CSLbool numeqsf(Lisp_Object a, Lisp_Object b)
{
Float_union aa;
aa.i = a - TAG_SFLOAT;
return ((double)aa.f == float_of_number(b));
}
#define numeqbs(a, b) numeqsb(b, a)
#endif
static CSLbool numeqbb(Lisp_Object a, Lisp_Object b)
{
int32 la = bignum_length(a);
if (la != (int32)bignum_length(b)) return NO;
la = (la >> 2) - 2;
while (la >= 0)
{ if (bignum_digits(a)[la] != bignum_digits(b)[la]) return NO;
else la--;
}
return YES;
}
#ifdef COMMON
#define numeqbc(a, b) numeqic(a, b)
#endif
#define numeqbf(a, b) numeqsb(b, a)
#ifdef COMMON
#define numeqrs(a, b) numeqsr(b, a)
static CSLbool numeqrr(Lisp_Object a, Lisp_Object b)
{
return numeq2(numerator(a), numerator(b)) &&
numeq2(denominator(a), denominator(b));
}
#define numeqrc(a, b) numeqic(a, b)
#define numeqrf(a, b) numeqsr(b, a)
#define numeqci(a, b) numeqic(b, a)
#define numeqcs(a, b) numeqic(b, a)
#define numeqcb(a, b) numeqic(b, a)
#define numeqcr(a, b) numeqic(b, a)
static CSLbool numeqcc(Lisp_Object a, Lisp_Object b)
{
return numeq2(real_part(a), real_part(b)) &&
numeq2(imag_part(a), imag_part(b));
}
#define numeqcf(a, b) numeqic(b, a)
#endif
#define numeqfi(a, b) numeqif(b, a)
#ifdef COMMON
#define numeqfs(a, b) numeqsf(b, a)
#endif
#define numeqfb(a, b) numeqbf(b, a)
#ifdef COMMON
#define numeqfr(a, b) numeqrf(b, a)
#define numeqfc(a, b) numeqic(a, b)
#endif
static CSLbool numeqff(Lisp_Object a, Lisp_Object b)
{
return (float_of_number(a) == float_of_number(b));
}
/*
* This comparison must signal an error on non-numeric operands in
* Common Lisp mode, but behave as EQ in CSL mode.
*/
#ifdef COMMON
# define differenta aerror1("Bad arg for =", a); return 0
# define differentb aerror1("Bad arg for =", b); return 0
#else
# define differenta return NO
# define differentb return NO
#endif
CSLbool numeq2(Lisp_Object a, Lisp_Object b)
{
#ifndef COMMON
if (a == b) return YES;
#endif
switch ((int)a & TAG_BITS)
{
case TAG_FIXNUM:
switch ((int)b & TAG_BITS)
{
case TAG_FIXNUM:
#ifdef COMMON
return (a == b);
#else
return NO;
#endif
#ifdef COMMON
case TAG_SFLOAT:
return numeqis(a, b);
#endif
case TAG_NUMBERS:
{ int32 hb = type_of_header(numhdr(b));
switch (hb)
{
case TYPE_BIGNUM:
return 0;
#ifdef COMMON
case TYPE_RATNUM:
return 0;
case TYPE_COMPLEX_NUM:
return numeqic(a, b); /* (= 2 #C(2.0 0.0))? Yuk */
#endif
default:
differentb;
}
}
case TAG_BOXFLOAT:
return numeqif(a, b);
default:
differentb;
}
#ifdef COMMON
case TAG_SFLOAT:
switch ((int)b & TAG_BITS)
{
case TAG_FIXNUM:
return numeqsi(a, b);
case TAG_SFLOAT:
return (a == b) ||
(a == TAG_SFLOAT && b == TAG_SFLOAT|0x80000000) ||
(a == TAG_SFLOAT|0x80000000 && b == TAG_SFLOAT); /* !!! */
case TAG_NUMBERS:
{ int32 hb = type_of_header(numhdr(b));
switch (hb)
{
case TYPE_BIGNUM:
return numeqsb(a, b);
case TYPE_RATNUM:
return numeqsr(a, b);
case TYPE_COMPLEX_NUM:
return numeqsc(a, b);
default:
differentb;
}
}
case TAG_BOXFLOAT:
return numeqsf(a, b);
default:
differentb;
}
#endif
case TAG_NUMBERS:
{ int32 ha = type_of_header(numhdr(a));
switch (ha)
{
case TYPE_BIGNUM:
switch ((int)b & TAG_BITS)
{
case TAG_FIXNUM:
return 0;
#ifdef COMMON
case TAG_SFLOAT:
return numeqbs(a, b);
#endif
case TAG_NUMBERS:
{ int32 hb = type_of_header(numhdr(b));
switch (hb)
{
case TYPE_BIGNUM:
return numeqbb(a, b);
#ifdef COMMON
case TYPE_RATNUM:
return 0;
case TYPE_COMPLEX_NUM:
return numeqbc(a, b);
#endif
default:
differentb;
}
}
case TAG_BOXFLOAT:
return numeqbf(a, b);
default:
differentb;
}
#ifdef COMMON
case TYPE_RATNUM:
switch ((int)b & TAG_BITS)
{
case TAG_FIXNUM:
return 0;
case TAG_SFLOAT:
return numeqrs(a, b);
case TAG_NUMBERS:
{ int32 hb = type_of_header(numhdr(b));
switch (hb)
{
case TYPE_BIGNUM:
return 0;
case TYPE_RATNUM:
return numeqrr(a, b);
case TYPE_COMPLEX_NUM:
return numeqrc(a, b);
default:
differentb;
}
}
case TAG_BOXFLOAT:
return numeqrf(a, b);
default:
differentb;
}
case TYPE_COMPLEX_NUM:
switch ((int)b & TAG_BITS)
{
case TAG_FIXNUM:
return numeqci(a, b);
case TAG_SFLOAT:
return numeqcs(a, b);
case TAG_NUMBERS:
{ int32 hb = type_of_header(numhdr(b));
switch (hb)
{
case TYPE_BIGNUM:
return numeqcb(a, b);
case TYPE_RATNUM:
return numeqcr(a, b);
case TYPE_COMPLEX_NUM:
return numeqcc(a, b);
default:
differentb;
}
}
case TAG_BOXFLOAT:
return numeqcf(a, b);
default:
differentb;
}
#endif
default: differenta;
}
}
case TAG_BOXFLOAT:
switch ((int)b & TAG_BITS)
{
case TAG_FIXNUM:
return numeqfi(a, b);
#ifdef COMMON
case TAG_SFLOAT:
return numeqfs(a, b);
#endif
case TAG_NUMBERS:
{ int32 hb = type_of_header(numhdr(b));
switch (hb)
{
case TYPE_BIGNUM:
return numeqfb(a, b);
#ifdef COMMON
case TYPE_RATNUM:
return numeqfr(a, b);
case TYPE_COMPLEX_NUM:
return numeqfc(a, b);
#endif
default:
differentb;
}
}
case TAG_BOXFLOAT:
return numeqff(a, b);
default:
differentb;
}
default:
differenta;
}
}
/* end of arith11.c */