File r38/packages/poly/subs3q.red artifact 1d79c2075f on branch master


module subs3q; % Routines for matching products.

% Author: Anthony C. Hearn.

% Copyright (c) 1992 RAND.  All rights reserved.

fluid '(!*mcd powlis1!* !*sub2 subfg!*);

global '(!*match !*resubs mchfg!*);

symbolic procedure subs3q u;
   %U is a standard quotient.
   %Value is a standard quotient with all product substitutions made;
   begin scalar x;
        x := mchfg!*;   %save value in case we are in inner loop;
        mchfg!* := nil;
        u := quotsq(subs3f numr u,subs3f denr u);
        mchfg!* := x;
        return u
   end;

symbolic procedure subs3f u;
   %U is a standard form.
   %Value is a standard quotient with all product substitutions made;
   subs3f1(u,!*match,t);

symbolic procedure subs3f1(u,l,bool);
   %U is a standard form.
   %L is a list of possible matches.
   %BOOL is a boolean variable which is true if we are at top level.
   %Value is a standard quotient with all product substitutions made;
   begin scalar x,z;
        z := nil ./ 1;
    a:  if null u then return z
         else if domainp u then return addsq(z,u ./ 1)
         else if bool and domainp lc u then go to c;
        x := subs3t(lt u,l);
        if not bool                             %not top level;
         or not mchfg!* then go to b;           %no replacement made;
        mchfg!* := nil;
        if numr x = u and denr x = 1 then <<x := u ./ 1; go to b>>
         % also shows no replacement made (sometimes true with non
         % commuting expressions)
         else if null !*resubs then go to b
         else if !*sub2 or powlis1!* then x := subs2q x;
           %make another pass;
        x := subs3q x;
    b:  z := addsq(z,x);
        u := cdr u;
        go to a;
    c:  x := list lt u ./ 1;
        go to b
   end;

symbolic procedure subs3t(u,v);
   % U is a standard term, V a list of matching templates.
   % Value is a standard quotient for the substituted term.
   begin scalar bool,w,x,y,z;
	x := mtchk(car u,if domainp cdr u then sizchk(v,1) else v);
	if null x then go to a                  %lpow doesn't match;
	 else if null caar x then go to b;      %complete match found;
	y := subs3f1(cdr u,x,nil);              %check tc for match;
	if mchfg!* then return multpq(car u,y);
    a:  return list u . 1;                      %no match;
    b:  x := cddar x;           %list(<subst value>,<denoms>);
	z := caadr x;           %leading denom;
	mchfg!* := nil;         %initialize for tc check;
	y := subs3f1(cdr u,!*match,nil);
	mchfg!* := t;
	if car z neq caar u then go to e
	 else if z neq car u    %powers don't match;
	  then y := multpq(caar u .** (cdar u-cdr z),y);
    b1: y := multsq(simpcar x,y);
	x := cdadr x;
	if null x then return y;
	z := 1;                 %unwind remaining denoms;
    c:  if null x then go to d;
	w:= if atom caar x or sfp caar x then caar x else
	     ((lambda ww;
		if kernp ww and eqcar(ww := mvar numr ww,car caar x)
		  then ww
		 else revop1 caar x)
	       (simp caar x) where subfg!* = nil);
	% In the non-commutative case we have to be very careful about
	% order of terms in a product. Introducing negative powers
	% solves this problem.
	if noncomp w or not !*mcd then bool := t;
%       z := multpf(mksp(w,if null bool then cdar x else -cdar x),z);
%       original line
	z := multf(z,!*p2f mksp(w,
				if null bool then cdar x else -cdar x));
	% kernel CAAR X is not unique here. Earlier versions used just
	% CAAR X, but this leads to sums of terms in the wrong order.
	% The code here is probably still not correct in all cases, and
	% may lead to unbounded calculations. Maybe SIMP should be used
	% instead of REVOP1, with appropriate adjustments in the code
	% to construct Z.
	x := cdr x;
	go to c;
    d:  return if not bool then car y . multf(z,cdr y)
		else multf(z,car y) . cdr y;
    e:  if simp car z neq simp caar u then errach list('subs3t,u,x,z);
	%maybe arguments were in different order, otherwise it's fatal;
	if cdr z neq cdar u
	  then y:= multpq(caar u .** (cdar u-cdr z),y);
	go to b1
   end;

symbolic procedure sizchk(u,n);
   if null u then nil
    else if length caar u>n then sizchk(cdr u,n)
    else car u . sizchk(cdr u,n);

symbolic procedure mtchk(u,v);
   %U is a standard power, V a list of matching templates.
   %If a match is made, value is of the form:
   %list list(NIL,<boolean form>,<subst value>,<denoms>),
   %otherwise value is an updated list of templates;
   begin scalar flg,v1,w,x,y,z;
        flg := noncomp car u;
    a0: if null v then return z;
        v1 := car v;
        w := car v1;
    a:  if null w then go to d;
        x := mtchp1(u,car w,caadr v1,cdadr v1);
    b:  if null x then go to c
         else if car (y := subla(car x,delete(car w,car v1))
                                . list(subla(car x,cadr v1),
                                      subla(car x,caddr v1),
                                      subla(car x,car w)
                                          . cadddr v1))
          then z := y . z
         else if lispeval subla(car x,cdadr v1) then return list y;
        x := cdr x;
        go to b;
    c:  if null flg then <<w := cdr w; go to a>>
         else if cadddr v1 and nocp w then go to e;
    d:  z :=aconc(z,v1);   % Could also be append(z,list v1).
    e:  v := cdr v;
        go to a0
   end;

symbolic procedure nocp u;
   null u or (noncomp caar u and nocp cdr u);

endmodule;

end;


REDUCE Historical
REDUCE Sourceforge Project | Historical SVN Repository | GitHub Mirror | SourceHut Mirror | NotABug Mirror | Chisel Mirror | Chisel RSS ]