REDUCE 3.6, 15-Jul-95, patched to 6 Mar 96 ...
% polynomial Inequality (Example where another system returned {1 <= x})
ineq_solve( (2*x^2+x-1)/(x-1) >= (x+1/2)^2 ,x);
{x=( - 0.894358 .. 0.326583),x=(1 .. 2.56777)}
ineq_solve({(2*x^2+x-1)/(x-1) >= (x+1/2)^2, x>0});
{x=(0 .. 0.326583),x=(1 .. 2.56777)}
ineq_solve({(2*x^2+x-1)/(x-1) >= (x+1/2)^2, x<-1});
{}
% Systems for determining indices of Jacobi polynomials (Winfried Neun).
reg :=
{2*a - 3>=0, 3>=0, 3>=0, 1>=0, 1>=0, 5>=0, 4>=0, 2*a - 4>=0, 2>=0,
2>=0, 0>=0, 2*a - 2>=0, k + 1>=0, - 2*a + k - 3>=0, - 2*a + k - 2>=0,
- 2*a + k>=0, k - 7>=0, 2*a - k + 4>=0, 2*a - k + 5>=0, 2*a - k + 3>=0}$
ineq_solve(reg,{k,a});
{a=(2 .. infinity),k=2*a + 3}
reg:=
{a + b - c>=0, a - b + c>=0, - a + b + c>=0, 0>=0, 2>=0,
2*c - 2>=0, a - b + c>=0, a + b - c>=0, - a + b + c - 2>=0,
2>=0, 0>=0, 2*b - 2>=0, k + 1>=0, - a - b - c + k>=0,
- a - b - c + k + 2>=0, - 2*b + k>=0, - 2*c + k>=0, a + b + c - k>=0,
2*b + 2*c - k - 2>=0, a + b + c - k>=0}$
ineq_solve (reg,{k,a,b,c});
{c=(1 .. infinity),
b=(1 .. infinity),
a=(max( - b + c,b - c) .. b + c - 2),
k=a + b + c}
clear reg;
% Example from Richard Liska.
lvars:={a,b,d}$
lfcond := {d>=0,
b + d>=0,
2 a - b + d + 2>=0,
- a + 2 d + 1>=0,
b>=0,
2 a - b>=0,
- a + 2 d>=0,
b - d>=0,
2 a - b - d - 2>=0,
- a + 2 d - 1>=0}$
ineq_solve(lfcond,lvars);
{d=(2 .. infinity),
b=(d .. 3*d - 4),
b + d + 2
a=(----------- .. 2*d - 1)}
2
clear lfcond,lvars;
end;
(TIME: ineq 510 610)