module groebnr2; % Part 2 of the Groebner package.
imports groebner,vdp2dip;
create!-package('(groebnr2 groebman glexconv groebres groebmes
groebrst groebtra groeweak hilberts hilbertp
hggroeb),
'(contrib groebner));
% Other packages needed.
load!-package 'groebner;
endmodule;
module groebman; % Operators for manipulation of bases and
% polynomials in Groebner style.
fluid '(!*factor !*complex !*exp); % standard REDUCE switch
fluid '( % switches from the user interface
!*groebopt !*groebfac !*groebres !*trgroeb !*trgroebs !*groebrm
!*trgroeb1 !*trgroebr !*groebprereduce groebrestriction!*
!*fullreduction !*groebstat !*groebprot !*gltbasis
!*groebsubs
!*vdpinteger !*vdpmodular % indicating type of algorithm
vdpsortmode!* % term ordering mode
secondvalue!* thirdvalue!* % auxiliary: multiple return values
fourthvalue!*
factortime!* % computing time spent in factoring
factorlvevel!* % bookkeeping of factor tree
pairsdone!* % list of pairs already calculated
probcount!* % counting subproblems
vbccurrentmode!* % current domain for base coeffs.
vbcmodule!* % for modular calculation: current prime
);
global '(groebrestriction % interface: name of function
groebresmax % maximum number of internal results
gvarslast % output: variable list
groebprotfile
gltb
);
flag ('(groebrestriction groebresmax gvarslast groebprotfile
gltb),'share);
% variables for counting and numbering
fluid '(hcount!* pcount!* mcount!* fcount!* bcount!* b4count!*
basecount!* hzerocount!*);
% control of the polynomial arithmetic actually loaded
fluid '(currentvdpmodule!*);
symbolic procedure gsorteval pars;
% reformat a polynomial or a list of polynomials by a distributive
% ordering; a list will be sorted and zeros are elimiated
begin scalar vars,u,v,w,oldorder,nolist,!*factor,!*exp,!*gsugar;
integer n,pcount!*; !*exp := t;
n := length pars;
u := reval car pars;
v := if n>1 then reval cadr pars else nil;
if not eqcar(u,'list) then
<<nolist := t; u := list('list,u)>>;
w := for each j in groerevlist u
collect if eqexpr j then !*eqn2a j else j;
vars :=vars := groebnervars(w,v);
if not vars then vdperr 'gsort;
oldorder := vdpinit vars;
!*vdpinteger :=nil;
w := for each j in w collect a2vdp j;
w := vdplsort w;
w := for each x in w collect vdp2a x;
while member(0,w) do w := delete(0,w);
setkorder oldorder;
return if nolist and w then car w else 'list . w;
end;
put('gsort,'psopfn,'gsorteval);
symbolic procedure gspliteval pars;
% split a polynomial into leading monomial and reductum;
begin scalar vars,x,u,v,w,oldorder,!*factor,!*exp,!*gsugar;
integer n,pcount!*; !*exp := t;
n := length pars;
u := reval car pars;
v := if n>1 then reval cadr pars else nil;
u := list('list,u);
w := for each j in groerevlist u
collect if eqexpr j then !*eqn2a j else j;
vars :=vars := groebnervars(w,v);
if not vars then vdperr 'gsplit;
oldorder := vdpinit vars;
!*vdpinteger :=nil;
w := a2vdp car w;
if vdpzero!? w then x := w else
<<x := vdpfmon(vdplbc w,vdpevlmon w);
w := vdpred w>>;
w := list('list,vdp2a x,vdp2a w);
setkorder oldorder;
return w;
end;
put('gsplit,'psopfn,'gspliteval);
symbolic procedure gspolyeval pars;
% calculate the S Polynomial from two given polynomials
begin scalar vars,u,u1,u2,v,w,oldorder,!*factor,
!*exp,!*gsugar;
integer n,pcount!*; !*exp := t;
n := length pars;
if n<2 or n#>3 then
rerror(groebnr2,1,"GSpoly, illegal number or parameters");
u1:= car pars; u2:= cadr pars;
u := list('list,u1,u2);
v := if n>2 then groerevlist caddr pars else nil;
w := for each j in groerevlist u
collect if eqexpr j then !*eqn2a j else j;
vars := vars := groebnervars(w,v);
if not vars then vdperr 'gspoly;
groedomainmode();
oldorder := vdpinit vars;
w := for each j in w collect f2vdp numr simp j;
w := vdp2a groebspolynom3 (car w,cadr w);
setkorder oldorder;
return w;
end;
put('gspoly,'psopfn,'gspolyeval);
symbolic procedure gvarseval u;
% u is a list of polynomials; gvars extracts the variables from u
begin integer n; scalar v,!*factor,!*exp,!*gsugar; !*exp := t;
n := length u;
v := for each j in groerevlist reval car u collect
if eqexpr j then !*eqn2a j else j;
v := groebnervars(v,nil);
v := if n= 2 then
intersection (v,groerevlist reval cadr u) else v;
return 'list . v
end;
put('gvars,'psopfn,'gvarseval);
symbolic procedure greduceeval pars;
% Polynomial reduction modulo a Groebner basis driver. u is an
% expression and v a list of expressions. Greduce calculates the
% polynomial u reduced wrt the list of expressions v reduced to a
% groebner basis modulo using the optional caddr argument as the
% order of variables.
% 1 expression to be reduced
% 2 polynomials or equations; base for reduction
% 3 optional: list of variables
begin scalar vars,x,u,v,w,np,oldorder,!*factor,!*groebfac,!*exp;
scalar !*gsugar;
integer n,pcount!*; !*exp := t;
if !*groebprot then groebprotfile := list 'list;
n := length pars;
x := reval car pars;
u := reval cadr pars;
v := if n>2 then reval caddr pars else nil;
w := for each j in groerevlist u
collect if eqexpr j then !*eqn2a j else j;
if null w then rerror(groebnr2,2,"Empty list in Greduce");
vars := groebnervars(w,v);
if not vars then vdperr 'greduce;
oldorder := vdpinit vars;
groedomainmode();
% cancel common denominators
w := for each j in w collect reorder numr simp j;
% optimize varable sequence if desired
if !*groebopt then<< w:=vdpvordopt (w,vars); vars := cdr w;
w := car w; vdpinit vars>>;
w := for each j in w collect f2vdp j;
if !*groebprot then w := for each j in w collect vdpenumerate j;
if not !*vdpinteger then
<<np := t;
for each p in w do
np := if np then vdpcoeffcientsfromdomain!? p
else nil;
if not np then <<!*vdpmodular:= nil; !*vdpinteger := t>>;
>>;
w := groebner2(w,nil);
x := a2vdp x;
if !*groebprot then
<<w := for each j in w collect vdpenumerate j;
groebprotsetq('candidate,vdp2a x);
for each j in w do groebprotsetq(mkid('poly,vdpnumber j),
vdp2a j)>>;
w := car w;
!*vdpinteger := nil;
w := groebnormalform(x , w, 'sort);
w := vdp2a w;
setkorder oldorder;
gvarslast := 'list . vars;
return if w then w else 0;
end;
put('greduce,'psopfn,'greduceeval);
% preduceeval moved to groesolv.red
put('preduce,'psopfn,'preduceeval);
endmodule;
module glexconv; % Newbase-Algorithm:
% Faugere, Gianni, Lazard, Mora
fluid '(!*factor !*complex !*exp !*gcd !*ezgcd); % REDUCE switch
fluid '( % switches from the user interface
!*groebopt !*groebfac !*groebres !*trgroeb !*trgroebs !*groebrm
!*trgroeb1 !*trgroebr !*groebprereduce groebrestriction!*
!*fullreduction !*groebstat !*groebprot !*gltbasis
!*groebsubs
!*vdpinteger !*vdpmodular % indicating type of algorithm
!*gsugar % sugar mode
vdpsortmode!* % term ordering mode
secondvalue!* thirdvalue!* % auxiliary: multiple return values
fourthvalue!*
factortime!* % computing time spent in factoring
factorlvevel!* % bookkeeping of factor tree
pairsdone!* % list of pairs already calculated
probcount!* % counting subproblems
vbccurrentmode!* % current domain for base coeffs.
vbcmodule!* % for modular calculation: current prime
glexdomain!* % information wrt current domain
!*gsugar
);
global '(groebrestriction % interface: name of function
groebresmax % maximum number of internal results
gvarslast % output: variable list
groebprotfile
gltb
);
flag ('(groebrestriction groebresmax gvarslast groebprotfile
gltb),'share);
switch groebopt,groebfac,groebres,trgroeb,trgroebs,trgroeb1,
trgroebr,groebstat,gltbasis;
% variables for counting and numbering
fluid '(hcount!* pcount!* mcount!* fcount!* bcount!* b4count!*
basecount!* hzerocount!*);
% control of the polynomial arithmetic actually loaded
fluid '(currentvdpmodule!*);
fluid '(glexmat!*); % matrix for the indirect lex ordering
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% interface functions
% parameters;
% glexconvert(basis,[vars],[maxdeg=n],[newvars={x,y,..}])
symbolic procedure glexconverteval u;
begin integer n; scalar !*groebfac,!*groebrm,!*factor,!*gsugar,
v, bas,vars,maxdeg,newvars,!*exp; !*exp := t;
u := for each p in u collect reval p;
bas := car u ; u := cdr u;
while u do
<< v := car u; u := cdr u;
if eqcar(v,'list) and null vars then vars := v
else if eqcar(v,'equal) then
if(v := cdr v)and eqcar(v,'maxdeg) then maxdeg := cadr v
else if eqcar(v,'newvars) then newvars := cadr v
else <<prin2 (car v);
rerror(groebnr2,4,"Glexconvert, keyword unknown")>>
else rerror(groebnr2,5,
"Glexconvert, too many positional parameters")>>;
return glexbase1(bas,vars,maxdeg,newvars);
end;
put('glexconvert,'psopfn,'glexconverteval);
symbolic procedure glexbase1(u,v,maxdeg,nv);
begin scalar vars,w,nd,oldorder,!*gcd,!*ezgcd,!*gsugar;
integer pcount!*;
!*gcd := t;
w := for each j in groerevlist u
collect if eqexpr j then !*eqn2a j else j;
if null w then rerror(groebnr2,6,"Empty list in Groebner");
vars := groebnervars(w,v);
!*vdpinteger := !*vdpmodular := nil;
if not flagp(dmode!*,'field) then !*vdpinteger := t
else
if !*modular then !*vdpmodular := t;
if null vars then vdperr 'groebner;
oldorder := vdpinit vars;
% cancel common denominators
w := for each j in w collect reorder numr simp j;
% optimize varable sequence if desired
w := for each j in w collect f2vdp j;
for each p in w do
nd := nd or not vdpcoeffcientsfromdomain!? p;
if nd then <<!*vdpmodular:= nil;
!*vdpinteger := t;
glexdomain!* := 2>>
else glexdomain!* := 1;
if glexdomain!*=1 and not !*vdpmodular then !*ezgcd:=t;
if null maxdeg then maxdeg := 200;
if nv then nv := groerevlist nv;
if null nv then nv := vars else
for each x in nv do if not member(x,vars) then
<<rerror(groebnr2,7,list("new variable ",x,
" is not a basis variable"))>>;
u := for each v in nv collect a2vdp v;
gbtest w;
w := glexbase2(w,u,maxdeg);
w := 'list . for each j in w collect prepf j;
setkorder oldorder;
gvarslast := 'list . vars;
return w;
end;
fluid '(glexeqsys!* glexvars!* glexcount!* glexsub!*);
symbolic procedure glexbase2(oldbase,vars,maxdeg);
% in contrast to documented algorithm monbase ist a list of
% triplets (mon.cof.vect)
% such that cof * mon == vect modulo oldbase
% (cof is needed because of the integer algoritm)
begin scalar lexbase, staircase, monbase;
scalar monom, listofnexts, vect,q,glexeqsys!*,glexvars!*,
glexsub!*;
integer n;
if not groezerodim!?(oldbase,length vars) then
prin2t "####### warning: ideal is not zerodimensional ######";
% prepare matrix for the indirect lex ordering
glexmat!* := for each u in vars collect vdpevlmon u;
monbase := staircase := lexbase := nil;
monom := a2vdp 1;
listofnexts := nil;
while not(monom = nil) do
<<
if not glexmultipletest(monom,staircase) then
<< vect := glexnormalform(monom,oldbase);
q := glexlinrel(monom,vect,monbase);
if q then
<<lexbase := q . lexbase; maxdeg := nil;
staircase := monom . staircase;
>>
else
<<monbase := glexaddtomonbase(monom,vect,monbase);
n := n #+1;
if maxdeg and n#> maxdeg then
rerror(groebnr2,8,
"No univar. polynomial within degree bound");
listofnexts :=
glexinsernexts(monom,listofnexts,vars)>>;
>>;
if null listofnexts then monom := nil
else << monom := car listofnexts ;
listofnexts := cdr listofnexts >>;
>>;
return lexbase;
end;
symbolic procedure glexinsernexts(monom,l,vars);
begin scalar x;
for each v in vars do
<< x := vdpprod(monom,v);
if not vdpmember(x,l) then
<<vdpputprop(x,'factor,monom); vdpputprop(x,'monfac,v);
l := glexinsernexts1(x,l);
>>;
>>;
return l;
end;
symbolic procedure glexmultipletest(monom,staircase);
if null staircase then nil
else if vevmtest!?(vdpevlmon monom, vdpevlmon car staircase)
then t
else glexmultipletest(monom, cdr staircase);
symbolic procedure glexinsernexts1(m,l);
if null l then list m
else if glexcomp(vdpevlmon m,vdpevlmon car l) then m.l
else car l . glexinsernexts1(m,cdr l);
symbolic procedure glexcomp(ev1,ev2);
% true if ev1 is greater than ev2
% we use an indirect ordering here (mapping via newbase variables)
glexcomp0(glexcompmap(ev1,glexmat!*),
glexcompmap(ev2,glexmat!*));
symbolic procedure glexcomp0(ev1,ev2);
if null ev1 then nil
else if null ev2 then glexcomp0(ev1,'(0))
else if (car ev1 #- car ev2) = 0
then glexcomp0(cdr ev1,cdr ev2)
else if car ev1 #< car ev2 then t
else nil;
symbolic procedure glexcompmap (ev,ma);
if null ma then nil
else glexcompmap1(ev,car ma) . glexcompmap(ev,cdr ma);
symbolic procedure glexcompmap1(ev1,ev2);
% the dot product of two vectors
if null ev1 or null ev2 then 0
else (car ev1 #* car ev2) #+ glexcompmap1(cdr ev1,cdr ev2);
symbolic procedure glexaddtomonbase(monom,vect,monbase);
% primary effect: (monom . vect) . monbase
% secondary effect: builds the equation system
begin scalar x;
if null glexeqsys!* then
<<glexeqsys!* := a2vdp 0; glexcount!*:=-1>>;
x := mkid('gunivar,glexcount!*:=glexcount!*+1);
glexeqsys!* := vdpsum(glexeqsys!*,vdpprod(a2vdp x,cdr vect));
glexsub!* := (x .(monom . vect)) . glexsub!*;
glexvars!* := x . glexvars!*;
return (monom . vect) . monbase;
end;
symbolic procedure glexlinrelold(monom,vect,monbase);
if monbase then
begin scalar sys,sub,auxvars,r,v,x;
integer n;
v := cdr vect;
for each b in reverse monbase do
<<x := mkid('gunivar,n); n := n+1;
v := vdpsum(v,vdpprod(a2vdp x,cddr b));
sub := (x . b) . sub;
auxvars := x . auxvars>>;
while not vdpzero!? v do
<<sys := vdp2f vdpfmon(vdplbc v,nil) . sys; v := vdpred v>>;
x := sys;
sys := groelinsolve(sys,auxvars);
if null sys then return nil;
% construct the lex polynomial
if !*trgroeb
then prin2t " ======= constructing new basis polynomial";
r := vdp2f vdpprod(monom,car vect) ./ 1;
for each s in sub do
r:= addsq(r,multsq(vdp2f vdpprod(cadr s,caddr s) ./ 1,
cdr assoc(car s,sys)));
r := vdp2f vdpsimpcont f2vdp numr r;
return r;
end;
symbolic procedure glexlinrel(monom,vect,monbase);
if monbase then
begin scalar sys,r,v,x;
v := vdpsum(cdr vect,glexeqsys!*);
while not vdpzero!? v do
<<sys := vdp2f vdpfmon(vdplbc v,nil) . sys; v := vdpred v>>;
x := sys;
sys := groelinsolve(sys,glexvars!*);
if null sys then return nil;
% construct the lex polynomial
r := vdp2f vdpprod(monom,car vect) ./ 1;
for each s in glexsub!* do
r:= addsq(r,multsq(vdp2f vdpprod(cadr s,caddr s) ./ 1,
cdr assoc(car s,sys)));
r := vdp2f vdpsimpcont f2vdp numr r;
return r;
end;
symbolic procedure glexnormalform(m,g);
% reduce m wrt basis G;
% the reduction product is preserved in m for later usage
begin scalar cof,vect,r,f,fac1;
if !*trgroeb then prin2t " ======= reducing ";
fac1 := vdpgetprop(m,'factor);
if fac1 then vect := vdpgetprop(fac1,'vector);
if vect then
<< f := vdpprod(cdr vect,vdpgetprop(m,'monfac));
cof := car vect>>
else
<< f := m; cof := a2vdp 1>>;
r := glexnormalform1(f,g,cof);
vdpputprop(m,'vector,r);
if !*trgroeb then
<<vdpprint vdpprod(car r,m); prin2t " =====> ";
vdpprint cdr r>>;
return r;
end;
symbolic procedure glexnormalform1(f,g,cof);
begin scalar f1,c,vev,divisor,done,fold,a,b;
integer n;
fold := f; f1 := vdpzero(); a:= a2vdp 1;
while not vdpzero!? f do
begin
vev:=vdpevlmon f; c:=vdplbc f;
divisor := groebsearchinlist (vev,g);
if divisor then done := t;
if divisor then
if !*vdpinteger then
<< f:=groebreduceonestepint(f,a,c,vev,divisor);
b := secondvalue!*;
cof := vdpprod(b,cof);
if not vdpzero!? f1 then
f1 := vdpprod(b,f1);
>>
else
f := groebreduceonesteprat(f,nil,c,vev,divisor)
else
<<f1 := vdpappendmon (f1,vdplbc f,vdpevlmon f);
f := vdpred f;
>>;
end;
if not done then return cof . fold;
f := groebsimpcont2(f1,cof); cof := secondvalue!*;
return cof . f;
end;
symbolic procedure groelinsolve(equations,xvars);
(begin scalar r,q,test,oldmod,oldmodulus;
if !*trgroeb then prin2t " ======= testing linear dependency ";
r := t;
if not !*modular and glexdomain!*=1 then
<<oldmod := dmode!*;
if oldmod then setdmode(get(oldmod,'dname),nil);
oldmodulus := current!-modulus;
setmod list 16381; % = 2**14-3
setdmode('modular,t);
r := groelinsolve1(for each u in equations collect
numr simp prepf u, xvars);
setdmode('modular,nil);
setmod list oldmodulus;
if oldmod then setdmode(get(oldmod,'dname),t);
>> where !*ezgcd=nil;
if null r then return nil;
r := groelinsolve1(equations,xvars);
if null r then return nil;
% divide out the common content
for each s in r do
if not(denr cdr s = 1) then test := t;
if test then return r;
q := numr cdr car r;
% for each s in cdr r do
% if q neq 1 then
% q := gcdf!*(q,numr cdr s);
% if q=1 then return r;
% r := for each s in r collect
% car s . (quotf(numr cdr s, q) ./ 1);
return r;
end) where !*ezgcd=!*ezgcd; % stack old value
symbolic procedure groelinsolve1(equations,xvars);
% Gaussian elimination in integer mode
% free of unexact divisions (see Davenport et al,CA, pp86-87
% special cases: trivial equations are ruled out early
% INPUT:
% equations: list of standard forms
% xvars: variables for the solution
% OUTPUT:
% list of pairs (var . solu) where solu is a standard quotient
%
% internal data structure: standard forms as polynomials in xvars
begin scalar oldorder,x,p,solutions,val,later,break,gc,field;
oldorder := setkorder xvars;
field := dmode!* and flagp(dmode!*,'field);
equations := for each eqa in equations collect reorder eqa;
for each eqa in equations do
if eqa and domainp eqa then break:= t;
if break then goto empty;
equations := sort(equations,function grloelinord);
again:
break := nil;
for each eqa in equations do if not break then
% car step: eliminate equations of type 23 = 0
% and 17 * u = 0
% and 17 * u + 22 = 0;
<< if null eqa then equations := delete(eqa,equations)
else if domainp eqa then break := t % inconsistent system
else if not member(mvar eqa,xvars) then break := t
else if domainp red eqa or not member(mvar red eqa,xvars) then
<<equations := delete (eqa,equations);
x := mvar eqa;
val := if lc eqa = 1 then negf red eqa ./ 1
else multsq(negf red eqa ./ 1, 1 ./lc eqa);
solutions := (x . val) . solutions;
equations := for each q in equations collect
groelinsub(q,list(x.val));
later :=
for each q in later collect groelinsub(q,list(x.val));
break := 0;
>>;
>>;
if break = 0 then goto again else if break then goto empty;
% perform an elimination loop
if null equations then goto ready;
equations := sort(equations,function grloelinord);
p := car equations; x := mvar p;
equations := for each eqa in cdr equations collect
if mvar eqa = x then
<< if field then
eqa := addf(eqa, negf multf(quotf(lc eqa,lc p),p))
else
<<gc := gcdf(lc p,lc eqa);
eqa := addf(multf(quotf(lc p,gc),eqa),
negf multf(quotf(lc eqa,gc),p))>>;
if not domainp eqa then
eqa := numr multsq(eqa ./ 1, 1 ./ lc eqa);
%%%%%%eqa := groelinscont(eqa,xvars);
eqa>>
else eqa;
later := p . later;
goto again;
ready: % do backsubstitutions
while later do
<<p := car later; later := cdr later;
p := groelinsub(p,solutions);
if domainp p or not member(mvar p,xvars) or
(not domainp red p and member(mvar red p,xvars)) then
<<break := t; later := nil>>;
x := mvar p;
val := if lc p = 1 then negf red p ./ 1
else quotsq(negf red p ./ 1 , lc p ./ 1);
solutions := (x . val) . solutions;
>>;
if break then goto empty else goto finis;
empty: solutions := nil;
finis: setkorder oldorder;
solutions := for each s in solutions collect
car s . (reorder numr cdr s ./ reorder denr cdr s);
return solutions;
end;
symbolic procedure grloelinord(u,v);
% apply ordop to the mainvars of u and v
ordop(mvar u, mvar v);
symbolic procedure groelinscont(f,vars);
% reduce content from standard form f
if domainp f then f else
begin scalar c;
c := groelinscont1(lc f,red f,vars);
if c=1 then return f;
prin2 "*************content: ";print c;
return quotf(f,c);
end;
symbolic procedure groelinscont1(q,f,vars);
% calculate the contents of standard form f
if null f or q=1 then q
else if domainp f or not member(mvar f,vars) then gcdf!*(q,f)
else groelinscont1(gcdf!*(q,lc f),red f,vars);
symbolic procedure groelinsub(s,a);
% s is a standard form linear in the top level variables
% a is an assiciation list (variable . sq) . ...
% The value is the standard form, where all substitutions
% from a are done in s (common denominator ignored).
numr groelinsub1(s,a);
symbolic procedure groelinsub1(s,a);
if domainp s then s ./ 1
else (if x then addsq(multsq(cdr x,lc s ./ 1),y)
else addsq(lt s .+ nil ./ 1,y))
where x=assoc(mvar s,a),y=groelinsub1(red s,a);
endmodule;
module groebres;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% optimization of h-Polynomials by resultant calculation and
% factorization
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
fluid '(!*trgroeb );
% the resultant is calculated from a h-polynomial and its predecessor
% if both are bivariate in the same variables and if these variables
% are the last ones in vdpvars*.
symbolic procedure groebtestresultant(h1,h2,lv);
begin scalar v1,hlist;
v1 := indexcpl(vevsum0(lv,h1),1);
if groebrescheck!?(2,v1,lv)
and indexcpl(vevsum0(lv,h2),1)=v1
then hlist :=
reverse vdplsort
groebhlistfromresultant
(h1,h2,cadr reverse vdpvars!*)
else
if groebrescheck1!?(2,v1,lv)
and indexcpl(vevsum0(lv,h2),1)=v1
then hlist :=
reverse vdplsort
groebhlistfromresultant
(h1,h2,caddr reverse vdpvars!*);
if null hlist then return nil;
return 'resultant .
for each x in hlist collect list(h2,vdpenumerate x);
end;
symbolic procedure groebhlistfromresultant(h1,h0,x);
% new h-polynomial calculation: calculate
% the resultant of the two distributive polynomials h1 and h0
% with respect to x.
begin scalar ct00,hh,hh1,hs2;
ct00:= time();
hh:= vdpsimpcont groebresultant(h1,h0,x);
if !*trgroeb then <<terpri();
printb 57;
prin2t " *** the resultant from ";
vdpprint h1;
prin2t " *** and";
vdpprint h0;
prin2t " *** is";
vdpprint hh;
printb 57;
terprit 4 >>;
hs2:= nil;
if not vdpzero!? hh then
<< hh1:= vdp2a vdprectoint(hh,vdplcm hh);
hh1:= fctrf !*q2f simp hh1;
if cdr hh1 and cddr hh1 then
hs2:= for each p in cdr hh1 collect a2vdp prepf car p;
if !*trgroeb and hs2 then
<<prin2 " factorization of resultant successful:";
terprit 2;
for each x in hs2 do vdpprint x;
terprit 2;
ct00:= time() - ct00;
prin2 " time for factorization:"; prin2 ct00;
terpri() >>;
>>;
return hs2
end;
symbolic procedure groebresultant(p1,p2,x);
begin scalar q1,q2,q;
q1:=vdp2a vdprectoint(p1,vdplcm p1);
q2:=vdp2a vdprectoint(p2,vdplcm p2);
q:=a2vdp prepsq simpresultant list(q1,q2,x);
return q;
end;
symbolic procedure groebrescheck!?(a,h1,vl);
length h1 = a and car h1 = vl - 1;
symbolic procedure groebrescheck1!?(a,h1,vl);
length h1 = a and car h1 = vl - 2 and cadr h1 = vl - 1;
endmodule;
module groebmes;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% trace messages for the algorithms
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
fluid '(vdpvars!* !*trgroeb !*trgroebs !*trgroeb1 !*trgroebr hcount!*
hzerocount!* factorlevel!* basecount!* groetime!* pcount!*);
symbolic procedure groebpairprint (p);
<<groebmessff(" pair(",cadr p,nil);
groebmessff(",",caddr p,nil);
prin2 "), ";
prin2 " lcm = ";print car p;
>>;
symbolic procedure groetimeprint;
<< prin2 ">> accum. cpu time:";
prin2 (time() - groetime!*);
prin2t " ms";
>>;
symbolic procedure groebmessff (m1,f,m2);
<< prin2 m1; prin2 vdpnumber f;
if !*gsugar then <<prin2 "/";prin2 gsugar f>>;
if m2 then prin2t m2 >>;
symbolic procedure groebmess0 (p);
if !*trgroeb then << vdpprint p; >>;
symbolic procedure groebmess1 (g,d);
if !*trgroeb then <<
prin2 " variables: "; print vdpvars!*;
printbl();
prin2t " Start of ITERATION "; terpri (); >>;
symbolic procedure groebmess2 f;
if !*trgroeb then << terpri();
groebmessff ("polynomial ",f," eliminated");
groetimeprint()>>;
symbolic procedure groebmess2a(f,cf,fn);
if !*trgroeb then << terpri();
groebmessff ("polynomial ",f,nil);
groebmessff (" elim. with cofactor ",cf," to");
vdpprint fn; terpri();
groetimeprint()>>;
symbolic procedure groebmess3(p,s);
if !*trgroebs then <<
prin2 "S-polynomial from ";
groebpairprint p;
vdpprint s; terpri();
groetimeprint();
terprit 3 >>;
symbolic procedure groebmess4 (p,d);
<< hcount!* := hcount!*+1;
hzerocount!* := hzerocount!*+1;
if !*trgroeb then <<
terpri(); printbl();
groebmessff(" reduction (",cadr p,nil);
groebmessff(",", caddr p,nil);
prin2 ") leads to 0; ";
<< prin2 n;
prin2 if n=1 then " pair" else " pairs">>
where n=length d;
prin2t " left";
printbl(); groetimeprint()>>;
>>;
symbolic procedure groebmess41 (p);
<< hcount!* := hcount!*+1;
hzerocount!* := hzerocount!*+1;
if !*trgroeb then << terpri(); printbl();
groebmessff(" polynomial(", p,nil);
prin2 ") reduced to 0;";
terpri(); printbl(); groetimeprint()>>;
>>;
symbolic procedure groebmess5(p,h);
if car p then % print for true h-Polys
<< hcount!* := hcount!* + 1;
if !*trgroeb then << terpri();
prin2 "H-polynomial ";
prin2 pcount!*;
prin2 " ev:"; prin2 vdpevlmon h;
groebmessff(" from pair (",cadr p,nil);
groebmessff(",", caddr p,")");
vdpprint h; terpri();
groetimeprint() >> >>
else
if !*trgroeb then << % print for input polys
prin2t "from actual problem input:";
vdpprint h;
groetimeprint() >>;
symbolic procedure groebmess50(g);
if !*trgroeb1 then <<
prin2 "list of active polynomials:";
for each d1 in g do
<<prin2 vdpgetprop(d1,'number);
prin2 " ">>;
terprit 2 >>;
symbolic procedure groebmess51(d);
if !*trgroeb1 then <<
prin2t "Candidates for pairs in this step:";
for each d1 in d do groebpairprint (d1);
terprit 2 >>;
symbolic procedure groebmess52(d);
if !*trgroeb1 then <<
prin2t "Actual new pairs from this step:";
for each d1 in d do groebpairprint (d1);
terprit 2 >>;
symbolic procedure groebmess7 h;
if !*trgroebs then
<<prin2t "Testing factorization for "; vdpprint h>>;
symbolic procedure groebmess8 (g,d);
if !*trgroeb1 then <<
prin2t " actual pairs: ";
if null d then prin2t "null"
else for each d1 in d do groebpairprint d1;
groetimeprint() >>
else if !*trgroeb then <<
prin2 n; prin2t if n=1 then " pair" else " pairs" >>
where n=length d;
symbolic procedure groebmess13(g,problems);
if !*trgroeb or !*trgroebr then <<
if g then
<<
basecount!* := basecount!* +1;
printbl(); printbl();
prin2 "end of iteration ";
for each f in reverse factorlevel!* do
<<prin2 f; prin2 ".">>;
prin2 "; basis "; prin2 basecount!*; prin2t ":";
prin2 "{";
for each g1 in g do vdpprin3t g1;
prin2t "}";
printbl(); printbl(); groetimeprint();
>>
else
<< printbl();
prin2 "end of iteration branch ";
for each f in reverse factorlevel!* do
<<prin2 f; prin2 ".">>;
prin2t " "; printbl(); groetimeprint();
>>;
if problems and !*trgroeb then
<<
groetimeprint(); terpri(); printbl();
prin2 " number of partial problems still to be solved:";
prin2t length problems;
terpri();
prin2 " preparing next problem ";
if car car problems = 'file then
prin2 cdr car problems
else
if cadddr car problems then
vdpprint car cadddr car problems; % head of list G
terpri();
>> >>;
symbolic procedure groebmess14 (h,hf);
if !*trgroeb then <<
prin2 "******************* factorization of polynomial ";
(if x then prin2t x else terpri() )
where x = vdpnumber(h);
% vdpprint h;
prin2t " factors:";
for each g in hf do vdpprint car g;
groetimeprint();
>>;
symbolic procedure groebmess15 f;
if !*trgroeb then
<<prin2t "***** monomial factor reduced:";
vdpprint vdpfmon(a2vbc 1,f)>>;
symbolic procedure groebmess19(p,restr,u);
if !*trgroeb then <<
printbl();
prin2 "calculation branch ";
for each f in reverse factorlevel!* do
<<prin2 f; prin2 ".">>;
prin2t " cancelled because";
vdpprint p;
prin2t "is member of an actual abort condition";
printbl(); printbl();
>>;
symbolic procedure groebmess19a(p,u);
if !*trgroeb then <<
printbl();
prin2 "during branch preparation ";
for each f in reverse u do
<<prin2 f; prin2 ".">>;
prin2t " cancelled because";
vdpprint p;
prin2t "was found in the ideal branch";
printbl();
>>;
symbolic procedure groebmess20 (p);
if !*trgroeb then <<
terpri();
prin2 "secondary reduction starting with";
vdpprint p>>;
symbolic procedure groebmess21(p1,p2);
if !*trgroeb then <<
prin2 "polynomial ";
prin2 vdpnumber p1;
prin2 " replaced during secondary reduction by ";
vdpprint p2;
>>;
symbolic procedure groebmess22(factl,abort1,abort2);
if null factl then nil
else
if !*trgroeb then
begin integer n;
prin2t "BRANCHING after factorization point";
n := 0;
for each x in reverse factl do
<< n := n+1;
prin2 "branch ";
for each f in reverse factorlevel!* do
<<prin2 f;prin2 ".";>>;
prin2t n;
for each y in car x do vdpprint y;
prin2t "simple IGNORE restrictions for this branch:";
for each y in abort1 do vdpprint y;
for each y in cadr x do vdpprint y;
if abort2 or caddr x then
<<prin2t
"set type IGNORE restrictions for this branch:";
for each y in abort2 do vdpprintset y;
for each y in caddr x do vdpprintset y;
>>;
printbl()>>;
end;
symbolic procedure groebmess23 (g0,rest1,rest2);
if !*trgroeb then
if null factorlevel!* then
prin2t "** starting calculation ******************************"
else
<< prin2 "** resuming calculation for branch ";
for each f in reverse factorlevel!* do
<<prin2 f; prin2 ".">>;
terpri();
if rest1 or rest2 then
<<
prin2t "-------IGNORE restrictions for this branch:";
for each x in rest1 do vdpprint x;
for each x in rest2 do vdpprintset x;
>>;
>>;
symbolic procedure groebmess24(h,problems1,restr);
% if !*trgroeb then
<<prin2t
"**********polynomial affected by branch restriction:";
vdpprint h;
if restr then prin2t "under current restrictions";
for each x in restr do vdpprint x;
if null problems1 then prin2t " CANCELLED"
else
<<prin2t "partitioned into";
vdpprintset car problems1;
>>;
>>;
symbolic procedure groebmess25 (h,abort2);
% if !*trgroeb then
<<prin2t "reduction of set type cancel conditions by";
vdpprint h;
prin2t "remaining:";
for each x in abort2 do vdpprintset x;
>>;
symbolic procedure groebmess26 (f1,f2);
if !*trgroebs and not vdpequal(f1,f2) then
<<terpri();
prin2t "during final reduction";
vdpprint f1;
prin2t "reduced to";
vdpprint f2;
terpri();>>;
symbolic procedure groebmess27 r;
if !*trgroeb then
<<terpri();
prin2t "factor ignored (considered already):";
vdpprint r>>;
symbolic procedure groebmess27a (h,r);
if !*trgroeb then
<<terpri();
vdpprint h;
prin2t " reduced to zero by factor";
vdpprint r>>;
symbolic procedure groebmess28 r;
if !*trgroeb then
<<prin2 "interim content reduction:"; print r>>;
symbolic procedure printbl(); printb (linelength nil #- 2);
symbolic procedure printb n; <<for i:=1:n do prin2 "-"; terpri()>>;
symbolic procedure vdpprintset l;
% print polynomials in one line;
if l then
<< prin2 "{"; vdpprin2 car l;
for each x in cdr l do
<<prin2 "; "; vdpprin2 x>>;
prin2t "}";>>;
symbolic procedure vdpprin2l u;
<<prin2 "("; vdpprin2 car u;
for each x in cdr u do <<prin2 ","; vdpprin2 x;>>;
prin2 ")";>>;
endmodule;
module groebrst;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% restrictions for polynomials during Groebner base calculation
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
fluid '(groebrestriction!*);
symbolic procedure groebtestrestriction (h,arg);
if groebrestriction!* = 'nonnegative then groebnonneg(h,arg)
else
if groebrestriction!* = 'positive then groebpos(h,arg)
else
if groebrestriction!* = 'zeropoint then groebzero(h,arg)
else
rerror(groebnr2,9,
"Groebner: general restrictions not yet implemented");
symbolic procedure groebnonneg(h,arg);
% test if h is a polynomial which can have the value zero with
% only nonnegative variable settings.
begin scalar x,break,vev1,vevl,problems,problems1,r;
if vdpzero!? h then return nil
else
if vevzero!? vdpevlmon h then goto finish;
% first test the coefficients
if vdpredzero!? h then return nil; % simple monomial
break := nil;
x := h;
while not vdpzero!? x and not break do
<<vev1 := vdpevlmon x;
if not vbcplus!? vdplbc x then break := t;
if not break then x := vdpred x>>;
if break then return nil; % at least one negative coeff
if vevzero!? vev1 then goto finish; % nonneg. solution imposs.
% homogenous polynomial: find combinations of
% variables which are solutions
x := h;
vev1 := vdpevlmon x;
vevl := vevsplit(vev1);
problems := for each x in vevl collect list x;
x := vdpred x;
while not vdpzero!? x do
<< vev1 := vdpevlmon x;
vevl := vevsplit(vev1);
problems1 := nil;
for each e in vevl do
for each p in problems do
<<r := if not member(e,p) then e . p else p;
problems1 := union(list r, problems1)>>;
problems := problems1;
x := vdpred x;
>>;
problems := % lift vevs to polynomials
for each p in problems collect
for each e in p collect
vdpfmon(a2vbc 1,e);
% rule out problems contained in others
for each x in problems do
for each y in problems do
if not eq(x,y) and subset!?(x,y) then
problems := delete (y,problems);
% rule out some by cdr
problems1 := nil;
while problems do
<<if vdpdisjoint!? (car problems,arg)
then problems1 := car problems . problems1;
problems := cdr problems;
>>;
finish:
groebmess24(h,problems1,arg);
return
if null problems1 then 'cancel
else 'restriction . problems1;
end;
symbolic procedure groebpos(h,dummy);
% test if h is a polynomial which can have the value zero with
% only positive (nonnegative and nonzero) variable settings.
begin scalar x,break,vev1;
if vdpzero!? h then return nil
else
if vevzero!? vdpevlmon h then return nil;
% a simple monomial can never have pos. zeros
if vdpredzero!? h then return groebposcancel(h);
break := nil;
x := h;
% test coefficients
while not vdpzero!? x and not break do
<<vev1 := vdpevlmon x;
if not vbcplus!? vdplbc x then break := t;
if not break then x := vdpred x>>;
if not break then return groebposcancel(h);
if not groebposvevaluate h then groebposcancel(h);
return nil;
end;
symbolic procedure groebposvevaluate h; t;
% test if a polynomial can become zero under user restrictions
% here a dummy to be rplaced elsewhere
symbolic procedure groebzero(h,dummy);
begin scalar l;
l:=vdplastmon h;
if l and vevzero!? cdr l then return groebposcancel h;
return nil;
end;
symbolic procedure groebposcancel(h);
<< groebmess24(h,nil,nil); 'cancel>>;
endmodule;
module groebtra;
% calculation of a Groebner base with the Buchberger algorithm
% including the backtracking information which denotes the
% dependency between base and input polynomials
% Authors: H. Melenk, H.M. Moeller, W. Neun
% November 1988
fluid '( % switches from the user interface
!*groebopt !*groebfac !*groebres !*trgroeb !*trgroebs !*groebrm
!*trgroeb1 !*trgroebr !*groebprereduce groebrestriction!*
!*groebstat !*groebdivide !*groebprot
vdpvars!* % external names of the variables
!*vdpinteger !*vdpmodular % indicating type of algorithm
vdpsortmode!* % term ordering mode
secondvalue!* thirdvalue!* % auxiliary: multiple return values
fourthvalue!*
factortime!* % computing time spent in factoring
factorlvevel!* % bookkeeping of factor tree
pairsdone!* % list of pairs already calculated
probcount!* % counting subproblems
vbccurrentmode!* % current domain for base coeffs.
groetags!* % starting point of tag variables
groetime!*
);
global '(gvarslast);
switch groebopt,groebfac,groebres,trgroeb,trgroebs,trgroeb1,
trgroebr,groebstat,groebprot;
% variables for counting and numbering
fluid '(hcount!* pcount!* mcount!* fcount!* bcount!* b4count!*
basecount!* hzerocount!*);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Interface
symbolic procedure groebnertraeval u;
% backtracking Groebner calculation
begin integer n; scalar !*groebfac,!*groebrm,!*groebprot,!*gsugar;
n := length u;
if n=1 then return groebnertra1(reval car u,nil,nil)
else if n neq 2
then rerror(groebnr2,10,
"GROEBNERT called with wrong number of arguments")
else return groebnertra1(reval car u,reval cadr u,nil)
end;
put('groebnert,'psopfn,'groebnertraeval);
smacro procedure vdpnumber f;
vdpgetprop(f,'number) ;
symbolic procedure groebnertra1(u,v,mod1);
% Buchberger algorithm system driver. u is a list of expressions
% and v a list of variables or NIL in which case the variables in u
% are used.
begin scalar vars,w,y,z,x,np,oldorder,groetags!*,tagvars;
integer pcount!*,nmod;
u := for each j in getrlist u collect
<<if not eqcar(j,'equal)
or not (idp (w:=cadr j) or (pairp w and
w = reval w and
get(car w,'simpfn)='simpiden))
then rerror(groebnr2,11,
"GROEBNERT parameter not {...,name = polynomial,...}")
else cadr j . caddr j
>>;
if null u then rerror(groebnr2,12,"Empty list in Groebner")
else if null cdr u then
return 'list . list('equal,cdar u,caar u);;
w := for each x in u collect cdr x;
if mod1 then
<<z := nil;
for each vect in w do
<<if not eqcar(vect,'list) then
rerror(groebnr2,13,"Non list given to GROEBNER");
if nmod=0 then nmod:= length cdr vect else
if nmod<(x:=length cdr vect) then nmod=x;
z := append(cdr vect,z);
>>;
if not eqcar(mod1,'list) then
rerror(groebnr2,14,"Illegal column weights specified");
vars := groebnervars(z,v);
tagvars := for i:=1:nmod collect mkid('! col,i);
w := for each vect in w collect
<<z:=tagvars; y := cdr mod1;
'plus . for each p in cdr vect collect
'times . list('expt,car z,car y) .
<<z := cdr z; y := cdr y;
if null y then y := '(1); list p>>
>>;
groetags!* := length vars + 1;
vars := append(vars,tagvars);
>>
else vars := groebnervars(w,v);
groedomainmode();
if null vars then vdperr 'groebner;
oldorder := vdpinit vars;
% cancel common denominators
u := pair(for each x in u collect car x,w);
u := for each x in u collect
<<z := simp cdr x;
multsq(simp car x,denr z ./ 1) . reorder numr z>>;
w := for each j in u collect cdr j;
% optimize varable sequence if desired
if !*groebopt then<< w:=vdpvordopt (w,vars); vars := cdr w;
w := car w; vdpinit vars>>;
w := pair (for each x in u collect car x,w);
w := for each j in w collect
<<z := f2vdp cdr j; vdpputprop(z,'cofact,car j)>>;
if not !*vdpinteger then
<<np := t;
for each p in w do
np := if np then vdpcoeffcientsfromdomain!? p else nil;
if not np then <<!*vdpmodular:= nil; !*vdpinteger := t>>;
>>;
w := groebtra2 w;
w := if mod1 then groebnermodres(w,nmod,tagvars) else
groebnertrares w;
setkorder oldorder;
gvarslast := 'list . vars;
return w;
end;
symbolic procedure groebnertrares w;
begin scalar c,u;
return
'list . for each j in w collect
<<c := prepsq vdpgetprop(j,'cofact);
u := vdp2a j;
if c=0 then u else list('equal,u,c)
>>;
end;
symbolic procedure groebnermodres(w,n,tagvars);
begin scalar x,c,oldorder;
c := for each u in w collect prepsq vdpgetprop(u,'cofact);
oldorder := setkorder tagvars;
w := for each u in w collect
'list .
<<u := numr simp vdp2a u;
for i := 1:n collect
prepf
if not domainp u and mvar u = nth(tagvars,i)
then <<x := lc u; u := red u; x>> else nil
>>;
setkorder oldorder;
% reestablish term order for output
w := for each u in w collect vdp2a a2vdp u;
w := pair(w,c);
return 'list .
for each p in w collect
if cdr p=0 then car p else
list('equal,car p,cdr p);
end;
symbolic procedure preduceteval pars;
% trace version of PREDUCE
% parameters:
% 1 expression to be reduced
% formula or equation
% 2 polynomials or equations; base for reduction
% must be equations with atomic lhs
% 3 optional: list of variables
begin scalar vars,x,y,u,v,w,z,oldorder,!*factor,!*exp,!*gsugar;
integer n,pcount!*; !*exp := t;
pars := groeparams(pars,2,3);
y := car pars; u := cadr pars; v:= caddr pars;
u := for each j in getrlist u
collect
<<if not eqcar(j,'equal) then
j . j else cadr j . caddr j>>;
if null u then rerror(groebnr2,15,"Empty list in PREDUCET");
w := for each p in u collect cdr p; % the polynomials
groedomainmode();
vars :=
if null v then
for each j in gvarlis w collect !*a2k j
else getrlist v;
if not vars then vdperr 'preducet;
oldorder := vdpinit vars;
u := for each x in u collect
<<z := simp cdr x;
multsq(simp car x,denr z ./ 1) . reorder numr z>>;
w := for each j in u collect
<<z := f2vdp cdr j; vdpputprop(z,'cofact,car j)>>;
if not eqcar(y,'equal) then y := list('equal,y,y);
x := a2vdp caddr y; % the expression
vdpputprop(x,'cofact,simp cadr y); % the lhs (name etc.)
w := tranormalform(x,w, 'sort,'f);
u := list('equal,vdp2a w,prepsq vdpgetprop(w,'cofact));
setkorder oldorder;
return u;
end;
put('preducet,'psopfn,'preduceteval);
symbolic procedure groebnermodeval u;
% Groebner for moduli calculation
(if n=0 or n>3 then
rerror(groebnr2,16,
"GROEBNERM called with wrong number of arguments")
else
groebnertra1(reval car u,
if n>=2 then reval cadr u else nil,
if n>=3 then reval caddr u else '(list 1))
) where n = length u;
put('groebnerm,'psopfn,'groebnermodeval);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% some macros for local usage only
smacro procedure tt(s1,s2);
% lcm of leading terms of s1 and s2
vevlcm(vdpevlmon s1,vdpevlmon s2);
symbolic procedure groebtra2 (p);
% setup all global variables for the Buchberger algorithm
% printing of statistics
begin scalar groetime!*,tim1,spac,spac1,p1,factortime!*,
pairsdone!*,factorlvevel!*;
factortime!* := 0;
groetime!* := time();
vdponepol(); % we construct dynamically
hcount!* := pcount!* := mcount!* := fcount!* :=
bcount!* := b4count!* := hzerocount!* := basecount!* := 0;
if !*trgroeb then
<<
prin2 "Groebner Calculation with Backtracking starts ";
terprit 2;
>>;
spac := gctime();
p1:= groebtra3 (p);
if !*trgroeb or !*trgroebr or !*groebstat then
<<
spac1 := gctime() - spac;
terpri();
prin2t "statistics for Groebner calculation";
prin2t "===================================";
prin2 " total computing time (including gc): ";
prin2((tim1 := time()) - groetime!*);
prin2t " milliseconds ";
prin2 " (time spent for garbage collection: ";
prin2 spac1;
prin2t " milliseconds)";
terprit 1;
prin2 "H-polynomials total: "; prin2t hcount!*;
prin2 "H-polynomials zero : "; prin2t hzerocount!*;
prin2 "Crit M hits: "; prin2t mcount!*;
prin2 "Crit F hits: "; prin2t fcount!*;
prin2 "Crit B hits: "; prin2t bcount!*;
prin2 "Crit B4 hits: "; prin2t b4count!*;
>>;
return p1;
end;
symbolic procedure groebtra3 (g0);
begin scalar x,g,d,d1,d2,p,p1,s,h,g99,one;
x := for each fj in g0 collect vdpenumerate trasimpcont fj;
for each fj in x do g := vdplsortin(fj,g0);
g0 := g; g := nil;
% iteration :
while (d or g0) and not one do
begin
if g0 then
<< % take next poly from input
h := car g0; g0 := cdr g0;
p := list(nil,h,h);
>>
else
<< % take next poly from pairs
p := car d; d := cdr d;
s := traspolynom (cadr p, caddr p); tramess3(p,s);
h := groebnormalform(s,g99,'tree); %piloting wo cofact
if vdpzero!? h then groebmess4(p,d)
else h := trasimpcont tranormalform(s,g99,'tree,'h);
>>;
if vdpzero!? h then goto bott;
if vevzero!? vdpevlmon h then % base 1 found
<< tramess5(p,h);
g0 := d := nil; g:= list h;
goto bott>>;
s:= nil;
% h polynomial is accepted now
h := vdpenumerate h;
tramess5(p,h);
% construct new critical pairs
d1 := nil;
for each f in g do
if groebmoducrit(f,h) then
<<d1 := groebcplistsortin( list(tt(f,h),f,h) , d1);
if tt(f,h) = vdpevlmon(f) then
<<g := delete (f,g); groebmess2 f>>;
>>;
groebmess51(d1);
d2 := nil;
while d1 do
<<d1 := groebinvokecritf d1;
p1 := car d1;
d1 := cdr d1;
if groebbuchcrit4(cadr p1,caddr p1,car p1)
then d2 := append (d2, list p1);
d1 := groebinvokecritm (p1,d1);
>>;
d := groebinvokecritb (h,d);
d := groebcplistmerge(d,d2);
g := h . g;
g99 := groebstreeadd(h, g99);
groebmess8(g,d);
bott:
end; % ITERATION
return groebtra3post g;
end;
symbolic procedure groebtra3post (g);
% final reduction
begin scalar r,p;
g := vdplsort g;
while g do
<<p := tranormalform(car g,cdr g,'sort,'f);
if not vdpzero!? p then r := trasimpcont p . r;
g := cdr g>>;
return reversip r;
end;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Reduction of polynomials
%
symbolic procedure tranormalform(f,g,type,mode);
% general procedure for reduction of one polynomial from a set
% f is a polynomial, G is a Set of polynomials either in
% a search tree or in a sorted list
% type describes the ordering of the set G:
% 'TREE G is a search tree
% 'SORT G is a sorted list
% 'LIST G is a list, but not sorted
% f has to be reduced modulo G
% version for idealQuotient: doing side effect calculations for
% the cofactors; only headterm reduction
begin scalar c,vev,divisor,break;
while not vdpzero!? f and not break do
begin
vev:=vdpevlmon f; c:=vdplbc f;
divisor :=
if type = 'tree then groebsearchinstree (vev,g)
else groebsearchinlist (vev,g);
if divisor and !*trgroebs then
<< prin2 "//-";
prin2 vdpnumber divisor;
>>;
if divisor then
if !*vdpinteger then
f := trareduceonestepint(f,nil,c,vev,divisor)
else
f := trareduceonesteprat(f,nil,c,vev,divisor)
else
break := t;
end;
if mode = 'f then f := tranormalform1(f,g,type,mode);
return f;
end;
symbolic procedure tranormalform1(f,g,type,mode);
% reduction of subsequent terms
begin scalar c,vev,divisor,break,f1;
f1 := f;
while not vdpzero!? f and not vdpzero!? f1 do
<<f1 := f; break := nil;
while not vdpzero!? f1 and not break do
<<vev:=vdpevlmon f1; c:=vdplbc f1;
f1 := vdpred f1;
divisor :=
if type = 'tree then groebsearchinstree (vev,g)
else groebsearchinlist (vev,g);
if divisor and !*trgroebs then
<< prin2 "//-";
prin2 vdpnumber divisor;
>>;
if divisor then
<< if !*vdpinteger then
f := trareduceonestepint(f,nil,c,vev,divisor)
else
f := trareduceonesteprat(f,nil,c,vev,divisor);
break := t>>;
>>;
>>;
return f;
end;
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
%
% special reduction procedures
symbolic procedure trareduceonestepint(f,dummy,c,vev,g1);
% reduction step for integer case:
% calculate f= a*f - b*g a,b such that leading term vanishes
% (vev of lvbc g divides vev of lvbc f)
%
% and calculate f1 = a*f1
% return value=f, secondvalue=f1
begin scalar vevlcm,a,b,cg,x,fcofa,gcofa;
fcofa := vdpgetprop(f,'cofact);
if null fcofa then fcofa := nil ./ 1;
gcofa := vdpgetprop(g1,'cofact);
if null gcofa then gcofa := nil ./ 1;
vevlcm := vevdif(vev,vdpevlmon g1);
cg := vdplbc g1;
% calculate coefficient factors
x := vbcgcd(c,cg);
a := vbcquot(cg,x);
b := vbcquot(c,x);
f:= vdpilcomb1 (f, a, vevzero(),
g1,vbcneg b, vevlcm);
x := vdpilcomb1tra (fcofa, a, vevzero(),
gcofa ,vbcneg b, vevlcm);
vdpputprop(f,'cofact,x);
return f;
end;
symbolic procedure trareduceonesteprat(f,dummy,c,vev,g1);
% reduction step for rational case:
% calculate f= f - g/vdpLbc(f)
%
begin scalar x,fcofa,gcofa,vev;
fcofa := vdpgetprop(f,'cofact);
gcofa := vdpgetprop(g1,'cofact);
vev := vevdif(vev,vdpevlmon g1);
x := vbcneg vbcquot(c,vdplbc g1);
f := vdpilcomb1(f,a2vbc 1,vevzero(),
g1,x,vev);
x := vdpilcomb1tra (fcofa,a2vbc 1 , vevzero(),
gcofa,x,vev);
vdpputprop(f,'cofact,x);
return f;
end;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% calculation of an S-polynomial
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
symbolic procedure traspolynom (p1,p2);
begin scalar s,ep1,ep2,ep,rp1,rp2,db1,db2,x,cofac1,cofac2;
if vdpzero!? p1 then return p1; if vdpzero!? p1 then return p2;
cofac1 := vdpgetprop(p1,'cofact); cofac2 := vdpgetprop(p2,'cofact);
ep1 := vdpevlmon p1; ep2 := vdpevlmon p2;
ep := vevlcm(ep1, ep2);
rp1 := vdpred p1; rp2 := vdpred p2;
db1 := vdplbc p1; db2 := vdplbc p2;
if !*vdpinteger then
<<x:=vbcgcd(db1,db2); db1:=vbcquot(db1,x); db2:=vbcquot(db2,x)>>;
ep1 := vevdif(ep,ep1); ep2 := vevdif(ep,ep2); db2 := vbcneg db2;
s := vdpilcomb1 (rp2,db1,ep2,rp1,db2,ep1);
x := vdpilcomb1tra (cofac2,db1,ep2,cofac1,db2,ep1);
vdpputprop(s,'cofact,x);
return s;
end;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Normalisation with cofactors taken into account
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
symbolic procedure trasimpcont(p);
if !*vdpinteger then trasimpconti p else trasimpcontr p;
% routines for integer coefficient case:
% calculation of contents and dividing all coefficients by it
symbolic procedure trasimpconti (p);
% calculate the contents of p and divide all coefficients by it
begin scalar res,num,cofac;
if vdpzero!? p then return p;
cofac := vdpgetprop(p,'cofact);
num := car vdpcontenti p;
if not vbcplus!? num then num := vbcneg num;
if not vbcplus!? vdplbc p then num:=vbcneg num;
if vbcone!? num then return p;
res := vdpreduceconti (p,num,nil);
cofac:=vdpreducecontitra(cofac,num,nil);
res := vdpputprop(res,'cofact,cofac);
return res;
end;
% routines for rational coefficient case:
% calculation of contents and dividing all coefficients by it
symbolic procedure trasimpcontr (p);
% calculate the contents of p and divide all coefficients by it
begin scalar res,cofac;
cofac := vdpgetprop(p,'cofact);
if vdpzero!? p then return p;
if vbcone!? vdplbc p then return p;
res := vdpreduceconti (p,vdplbc p,nil);
cofac:=vdpreducecontitra(cofac,vdplbc p,nil);
res := vdpputprop(res,'cofact,cofac);
return res;
end;
symbolic procedure vdpilcomb1tra (cofac1,db1,ep1,cofac2,db2,ep2);
% the linear combination, here done for the cofactors
% (standard quotients)
addsq(multsq(cofac1,vdp2f vdpfmon(db1,ep1) ./ 1),
multsq(cofac2,vdp2f vdpfmon(db2,ep2) ./ 1));
symbolic procedure vdpreducecontitra(cofac,num,dummy);
% divide the cofactor by a number
quotsq(cofac,simp vbc2a num);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% special handling of moduli
%
symbolic procedure groebmoducrit(p1,p2);
null groetags!*
or pnth(vdpevlmon p1,groetags!*) = pnth(vdpevlmon p2,groetags!*);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% trace messages
%
symbolic procedure tramess0 x;
if !*trgroeb then
<<prin2t "adding member to intermediate quotient base:";
vdpprint x;
terpri()>>;
symbolic procedure tramess1 (x,p1,p2);
if !*trgroeb then
<<prin2 "pair ("; prin2 vdpnumber p1; prin2 ",";
prin2 vdpnumber p2;
prin2t ") adding member to intermediate quotient base:";
vdpprint x;
terpri()>>;
symbolic procedure tramess5(p,h);
if car p then % print for true h-Polys
<< hcount!* := hcount!* + 1;
if !*trgroeb then <<
terpri();
prin2 "H-polynomial ";
prin2 pcount!*;
groebmessff(" from pair (",cadr p,nil);
groebmessff(",", caddr p,")");
vdpprint h;
prin2t "with cofactor";
writepri(mkquote prepsq vdpgetprop(h,'cofact),'only);
groetimeprint() >> >>
else
if !*trgroeb then << % print for input polys
prin2t "candidate from input:";
vdpprint h;
groetimeprint() >>;
symbolic procedure tramess3(p,s);
if !*trgroebs then <<
prin2 "S-polynomial ";
prin2 " from ";
groebpairprint p;
vdpprint s;
prin2t "with cofactor";
writepri(mkquote prepsq vdpgetprop(s,'cofact),'only);
groetimeprint();
terprit 3 >>;
endmodule;
module groeweak; % weak test for f ~ 0 modulo G
fluid '(!*groebweak current!-modulus pairsdone!* !*vdpinteger
groebmodular!* !*groebfac);
switch groebweak;
symbolic procedure groebweakzerotest(f,g,type);
% test f==0 modulo G with ON MODULAR
begin scalar f1,c,vev,divisor,oldmode,a;
integer n,oldprim;
if vdpzero!? f then return f;
if current!-modulus= 1 then setmod list 2097143;
oldmode := setdmode('modular,t);
f := groebvdp2mod f;
f1 := vdpzero(); a:= vbcfi 1;
while not vdpzero!? f and vdpzero!? f1 do
begin
vev:=vdpevlmon f; c:=vdplbc f;
if type = 'sort then
while g
and vevcompless!? (vev,vdpevlmon (car g))
do g := cdr g;
divisor :=
if type = 'tree then groebsearchinstree(vev,g)
else groebsearchinlist (vev,g);
if divisor and !*trgroebs then
<< prin2 "//m-";
prin2 vdpnumber divisor;
>>;
if divisor then
if vdplength divisor = 1 then
f := vdpcancelmvev(f,vdpevlmon divisor)
else
<<divisor := groebvdp2mod(divisor);
if divisor then f :=
groebreduceonesteprat(f,nil,c,vev,divisor)
else f1 := f>>
else
f1 := f;
% ready:
end;
if not vdpzero!? f1 and !*trgroebs then
<<prin2t " - nonzero result in modular reduction:";
vdpprint f1;
>>;
setdmode('modular,nil);
if oldmode then setdmode(get(oldmode,'dname),t);
return vdpzero!? f1;
end;
smacro procedure tt(s1,s2);
% lcm of leading terms of s1 and s2
vevlcm(vdpevlmon s1,vdpevlmon s2);
symbolic procedure groebweaktestbranch!=1(poly,g,d);
% test GB(G) == {1} in modular style
groebweakbasistest(list poly,g,d);
symbolic procedure groebweakbasistest(g0,g,d);
begin scalar oldmode,d,d1,d2,p,p1,s,h;
scalar !*vdpinteger; % switch to field type calclulation
return nil;
if not !*groebfac then return nil;
if current!-modulus= 1 then setmod list 2097143;
if !*trgroeb then
prin2t "---------------- modular test of branch ------";
oldmode := setdmode('modular,t);
g0 := for each p in g0 collect groebvdp2mod p;
g := for each p in g collect groebvdp2mod p;
d := for each p in d collect list (car p,
groebvdp2mod cadr p, groebvdp2mod caddr p);
while d or g0 do
begin
if g0 then
<< % take next poly from input
h := car g0; g0 := cdr g0; p := list(nil,h,h);
>>
else
<< % take next poly from pairs
p := car d;
d := delete (p,d);
s := groebspolynom (cadr p, caddr p);
h:=groebsimpcontnormalform groebnormalform(s,g,'sort);
if vdpzero!? h then !*trgroeb and groebmess4(p,d);
>>;
if vdpzero!? h then
<<pairsdone!* := (vdpnumber cadr p . vdpnumber caddr p)
. pairsdone!*;
goto bott>>;
if vevzero!? vdpevlmon h then % base 1 found
<< !*trgroeb and groebmess5(p,h);
goto stop>>;
s:= nil;
h := vdpenumerate h; !*trgroeb and groebmess5(p,h);
% construct new critical pairs
d1 := nil;
for each f in g do
<<d1 := groebcplistsortin(list(tt(f,h),f,h),d1);
if tt(f,h) = vdpevlmon(f) then
<<g := delete (f,g);
!*trgroeb and groebmess2 f>>;
>>;
!*trgroeb and groebmess51(d1);
d2 := nil;
while d1 do
<<d1 := groebinvokecritf d1;
p1 := car d1; d1 := cdr d1;
d2 := groebinvokecritbuch4 (p1,d2);
d1 := groebinvokecritm (p1,d1);
>>;
d := groebinvokecritb (h,d);
d := groebcplistmerge(d,d2);
g := h . g;
goto bott;
stop: d := g := g0 := nil;
bott:
end;
if !*trgroeb and null g then
prin2t "**** modular test detects empty branch!";
if !*trgroeb then
prin2t "------ end of modular test of branch ------";
setdmode('modular,nil);
if oldmode then setdmode(get(oldmode,'dname),t);
return null g;
end;
fluid '(!*localtest);
symbolic procedure groebfasttest(g0,g,d,g99);
if !*localtest then
<<!*localtest := nil;
groebweakbasistest(g0,g,d)>>
else if !*groebweak and g and vdpunivariate!? car g
then groebweakbasistest(g0,g,d);
symbolic procedure groebvdp2mod f;
%convert a vdp in modular form
% in case of headterm loss, nil is returned
begin scalar u,c,mf,s;
u := vdpgetprop(f,'modimage);
if u then return if u='nasty then nil else u;
mf := vdpresimp f;
if !*gsugar then vdpputprop(mf,'sugar,vdpgetprop(f,'sugar));
c := errorset!*(list('vbcinv,mkquote vdplbc mf),nil);
if not pairp c then
<<prin2t "************** nasty module (loss of headterm) ****";
print f; print u; vdpprint f; vdpprint u;
vdpputprop(f,'modimage,'nasty);
return nil>>;
u := vdpvbcprod(mf,car c);
vdpputprop(u,'number,vdpgetprop(f,'number));
vdpputprop(f,'modimage,u);
if !*gsugar then vdpputprop(u,'sugar,vdpgetprop(f,'sugar));
return u;
end;
symbolic procedure groebmodeval(f,break);
% evaluate LISP form r with REDUCE modular domain
begin scalar oldmode,a,!*vdpinteger,groebmodular!*;
groebmodular!* := t;
if current!-modulus= 1 then setmod list 2097143;
oldmode := setdmode('modular,t);
a := errorset!*(f,t);
setdmode('modular,nil);
if oldmode then setdmode(get(oldmode,'dname),t);
return if atom a then nil else car a;
end;
endmodule;
module hilberts; % Hilbert series of a set of Monomials.
% Author: Joachim Hollman, Royal Institute for Technology,
% Stockholm, Sweden
% email: <joachim@nada.kth.se>
Comment
--------------------------------------------------------
A very brief "description" of the method used.
M=k[x,y,z]/(x^2*y,x*z^2,y^2)
x.
0 --> ker(x.) --> M --> M --> M/x --> 0
M/x = k[x,y,z]/(x^2*y,x*z^2,y^2,x) = k[x,y,z]/(x,y^2)
ker(x.) = ((x) + (x^2*y,x*z^2,y^2))/(x^2*y,x*z^2,y^2) =
= (x,y^2)/(x^2*y,x*z^2,y^2)
Hilb(ker(x.)) = Hilb - Hilb
(x,y^2) (x^2*y,x*z^2,y^2)
= 1/(1-t)^3 - Hilb -
k[x,y,z]/(x,y^2)
- (1/(1-t)^3 - Hilb
k[x,y,z]/(x^2*y,x*z^2,y^2)
= Hilb -Hilb
M k[x,y,z]/(x,y^2)
If you only keep the numerator in Hilb = N(t)/(1-t)^3
M
then you get
(1-t)N (t) = N (t) - t (N (t) - N (t) )
I I+(x) I Ann(x) + I
i.e.
N (t) = N (t) + t N (t) (*)
I I+(x) Ann(x) + I
Where
I = (x^2*y,x*z^2,y^2)
I + (x) = (x,y^2)
I + Ann(x) = (x*y,z^2,y^2)
N (t) is the numerator polynomial in Hilb
I k[x,y,z]/I
Equation (*) is what we use to compute the numerator polynomial, i.e.
we "divide out" one variable at a time until we reach a base case.
(One is not limited to single variables but I don't know of any good
strategy for selecting a monomial.)
Usage: hilb({monomial_1,...,monomial_n} [,variable])
;
fluid '(nvars!*);
% ************** MACROS ETC. **************
smacro procedure term(c,v,e);
list('times,c,list('expt,v,e));
% -------------- safety check --------------
smacro procedure var!-p(m);
and(m,atom(m),not(numberp(m)));
smacro procedure check!-expt(m);
and(eqcar(m,'expt),var!-p(cadr(m)),numberp(caddr(m)));
smacro procedure check!-single!-var(m);
if var!-p(m) then t
else check!-expt(m);
smacro procedure check!-mon(m);
if check!-single!-var(m) then t
else if eqcar(m,'times) then check!-times(cdr(m))
else nil;
smacro procedure check!-args(monl,var);
and(listp monl,eqcar(monl,'list),var!-p(var), check!-monl(monl));
symbolic procedure make!-vector (n,pat);
begin scalar v;
v:=mkvect n;
for i:=1:n do putv(v,i,pat);
return v;
end;
% -------------- monomials --------------
smacro procedure alloc!-mon(n);
make!-vector(n,0);
smacro procedure get!-nth!-exp(mon,n);
getv(mon,n);
smacro procedure set!-nth!-exp(mon,n,d);
putv(mon,n,d);
smacro procedure get!-tdeg(mon);
getv(mon,0);
smacro procedure set!-tdeg(mon,d);
putv(mon,0,d);
% -------------- ideals --------------
smacro procedure the!-empty!-ideal();
list(nil,nil);
smacro procedure get!-next!-mon(ideal);
<<x:=caadr ideal;
if cdadr ideal then ideal:=list(car ideal,cdadr ideal)
else ideal:=the!-empty!-ideal();
x>>;
smacro procedure not!-empty!-ideal(ideal);
cadr ideal;
smacro procedure first!-mon(ideal);
caadr ideal;
smacro procedure append!-ideals(ideal1,ideal2);
list(car ideal2,append(cadr ideal1,cadr ideal2));
symbolic procedure insert!-var(var,ideal);
% inserts variable var as last generator of ideal
begin
scalar last;
last:=list(make!-one!-var!-mon(var));
return(list(last,append(cadr ideal,last)));
end;
symbolic procedure add!-to!-ideal(mon,ideal);
% add mon as generator to the ideal
begin
scalar last;
last := list(mon);
if ideal = the!-empty!-ideal() then
rplaca(cdr(ideal),last)
else
rplacd(car(ideal),last);
rplaca(ideal,last);
end;
% ************** END OF MACROS ETC. **************
% ************** INTERFACE TO ALGEBRAIC MODE **************
symbolic procedure hilbsereval(u);
begin
scalar l,monl,var;
l:=length(u);
if l < 1 or l > 2 then
rerror(groebnr2,17,
"Usage: hilb({monomial_1,...,monomial_n} [,variable])")
else if l = 1 then
<<
monl:= reval car u;
var:= 'x;
>>
else
<<
monl:= reval car u;
var:= reval cadr u;
>>;
monl := 'list . for each aa in (cdr monl) collect reval aa;
if not check!-args(monl,var) then
rerror(groebnr2,18,
"Usage: hilb({monomial_1,...,monomial_n} [,variable])");
% return(aeval
% list('QUOTIENT,
% coefflist2prefix(NPol(gltb2arrideal(monl)), var),
% list('EXPT,list('PLUS,1,list('TIMES,-1,var)),
% nvars!*)));
return(aeval
coefflist2prefix(npol(gltb2arrideal(monl)), var));
end;
% define "hilb" to be the algebraic mode function
put('hilb,'psopfn,'hilbsereval);
symbolic procedure check!-monl(monl);
begin
scalar flag,tmp;
flag:=t;
monl:=gltb!-fix(monl);
while monl and flag do
<<
tmp:=car monl;
flag:=check!-mon(tmp);
monl:=cdr monl;
>>;
return(flag);
end;
symbolic procedure check!-times(m);
begin
scalar flag,tmp;
flag:=t;
while m and flag do
<<
tmp:= car m;
flag:=check!-single!-var(tmp);
m:=cdr m;
>>;
return(flag);
end;
symbolic procedure coefflist2prefix(cl,var);
begin
scalar i,poly;
i:=0;
for each c in cl do
<<
poly:= cons(term(c,var,i),poly);
i:=i+1;
>>;
return (cons('plus,poly));
end;
symbolic procedure indets(l);
% "indets" returns a list containing all the
% indeterminates of l.
% l is supposed to have a form similar to the variable
% GLTB in the Groebner basis package.
% (LIST (EXPT Z 2) (EXPT X 2) Y)
begin
scalar varlist;
for each m in l do
if m neq 'list then
if atom(m) then varlist:=union(list(m),varlist)
else if eqcar(m,'expt)
then varlist:=union(list(cadr(m)),varlist)
else varlist:=union(indets(cdr(m)),varlist);
return(varlist);
end;
symbolic procedure build!-assoc(l);
% Given a list of indeterminates (x1 x2 ...xn) we produce
% an a-list of the form ((x1.1) (x2.2)... (xn.n))
begin
scalar i;
i:=0;
return(for each var in l collect progn(i:=i+1,cons(var,i)));
end;
symbolic procedure mons(l);
% rewrite the leading monomials (i.e. GLTB).
% the result is a list of monomials of the form:
% (variable . exponent) or ((variable1 . exponent1) ...
% (variablen . exponentn))
%
% mons('(LIST (EXPT Z 2) (EXPT X 2) (TIMES Y (EXPT X 3))));
% (((Y . 1) (X . 3)) (X . 2) (Z . 2))
begin
scalar monlist;
for each m in l do
if m neq 'list then monlist:=
if atom(m) then cons(cons(m,1),monlist)
else if eqcar(m,'expt)
then cons(cons(cadr(m),caddr(m)),monlist)
else (for each x in cdr(m) collect mons!-aux(x)) . monlist;
return(monlist);
end;
symbolic procedure mons!-aux(m);
if atom(m) then cons(m,1)
else if eqcar(m,'expt) then cons(cadr(m),caddr(m));
symbolic procedure lmon2arrmon(m);
% list-monomial to array-monomial
% a list-monomial has the form: (variable_number . exponent)
% or is a list with entries of this form.
% "variable_number" is the number associated with the variable,
% see build!-assoc()
begin
scalar tdeg,mon;
mon:=alloc!-mon(nvars!*);
tdeg:=0;
if listp m then
for each varnodotexp in m do
<<
set!-nth!-exp(mon,car varnodotexp, cdr varnodotexp);
tdeg:=tdeg+cdr varnodotexp;
>>
else
<<
set!-nth!-exp(mon,car m, cdr m);
tdeg:=tdeg+cdr m;
>>;
set!-tdeg(mon,tdeg);
return(mon);
end;
symbolic procedure gltb!-fix(l);
% sometimes GLTB has the form (list (list...))
% instead of (list ...)
if and(listp cadr l,caadr(l) = 'list) then cadr l else l;
symbolic procedure ge(m1,m2);
if get!-tdeg(m1) >= get!-tdeg(m2) then t else nil;
symbolic procedure get!-end!-ptr(l);
begin
scalar ptr;
while l do
<<
ptr:=l;
l:=cdr l;
>>;
return(ptr);
end;
symbolic procedure gltb2arrideal(xgltb);
% Convert the monomial ideal given by GLTB (in list form)
% to a list of vectors where each vector represents a monomial.
begin
scalar l;
l:=indets(gltb!-fix(xgltb));
nvars!* := length(l);
l:= sublis(build!-assoc(l),mons(gltb!-fix(xgltb)));
l:=for each m in l collect lmon2arrmon(m);
l:=sort(l,'ge);
return(list(get!-end!-ptr(l),l));
end;
% ************** END OF INTERFACE TO ALGEBRAIC MODE **************
%************** PROCEDURES **************
symbolic procedure npol(ideal);
% recursively computes the numerator of the Hilbert series
begin
scalar v,si;
v:=next!-var(ideal);
if not v then return(base!-case!-pol(ideal));
si:=split!-ideal(ideal,v);
return(shift!-add(npol(car si),npol(cadr si)));
end;
symbolic procedure divides!-by!-var(var,mon);
begin
scalar div;
if get!-nth!-exp(mon,var) = 0 then return(nil);
div:=alloc!-mon(nvars!*);
for i:=1 : nvars!* do set!-nth!-exp(div,i,get!-nth!-exp(mon,i));
set!-nth!-exp(div,var,get!-nth!-exp(mon,var)-1);
set!-tdeg(div,get!-tdeg(mon)-1);
return(div);
end;
symbolic procedure divides(m1,m2);
% does m1 divide m2?
% m1 and m2 are monomials
% result: either nil (when m1 does not divide m2) or m2/m1
begin
scalar m,d,i;
i:=1;
m:=alloc!-mon(nvars!*);
set!-tdeg(m,d:=get!-tdeg(m2)-get!-tdeg(m1));
while d >= 0 and i <= nvars!* do
<<
set!-nth!-exp(m,i,d:=get!-nth!-exp(m2,i) - get!-nth!-exp(m1,i));
i:= i+1;
>>;
if d < 0 then
return (nil)
else
return(m);
end;
symbolic procedure shift!-add(p1,p2);
% p1+z*p2
% p1 and p2 are polynomials (nonempty coefficient lists)
begin
scalar p,pptr;
pptr:=p:=cons(car p1,nil);
p1:=cdr p1;
while p1 and p2 do
<<
rplacd(pptr,cons(car p1 + car p2,nil));
p1:=cdr p1;
p2:=cdr p2;
pptr:=cdr pptr;
>>;
if p1 then
rplacd(pptr,p1)
else
rplacd(pptr,p2);
return(p);
end;
symbolic procedure rem!-mult(ipp1,ipp2);
% the union of two ideals with redundancy of generators eliminated
begin
scalar fmon,inew,isearch,primeflag,x;
% fix; x is used in the macro...
inew := the!-empty!-ideal();
while not!-empty!-ideal(ipp1) and not!-empty!-ideal(ipp2) do
begin
if get!-tdeg(first!-mon(ipp2)) < get!-tdeg(first!-mon (ipp1))
then <<
fmon:=get!-next!-mon(ipp1);
isearch:=ipp2;
>>
else
<<
fmon:=get!-next!-mon(ipp2);
isearch:=ipp1;
>>;
primeflag:=t;
while primeflag and not!-empty!-ideal(isearch) do
if divides(get!-next!-mon(isearch),fmon) then primeflag:=nil;
if primeflag then add!-to!-ideal(fmon,inew);
end;
if not!-empty!-ideal(ipp1) then return(append!-ideals(inew,ipp1))
else return(append!-ideals(inew,ipp2));
end;
symbolic procedure next!-var(ideal);
% extracts a variable in the ideal suitable for division
begin
scalar x,m,var;
repeat
<< m:=get!-next!-mon(ideal);
var:=get!-var!-if!-not!-single(m);
>> until var or ideal = the!-empty!-ideal();
return(var);
end;
symbolic procedure get!-var!-if!-not!-single(mon);
% returns nil if the monomial is in a single variable,
% otherwise the index of the second variable of the monomial
begin
scalar i,foundvarflag,exp;
i := 0;
foundvarflag:=nil;
while not foundvarflag do
<<
i:=i+1;
exp:=get!-nth!-exp(mon,i);
if exp > 0 then foundvarflag:=t;
>>;
foundvarflag:=nil;
while i < nvars!* and not foundvarflag do
<<
i:=i+1;
exp:=get!-nth!-exp(mon,i);
if exp > 0 then foundvarflag:=t;
>>;
if foundvarflag then return(i)
else return(nil);
end;
symbolic procedure make!-one!-var!-mon(vindex);
% returns the monomial consisting of the single variable vindex
begin
scalar mon;
mon := alloc!-mon(nvars!*);
for i := 1:nvars!* do set!-nth!-exp(mon,i,0);
set!-nth!-exp(mon,vindex,1);
set!-tdeg(mon,1);
return(mon);
end;
symbolic procedure split!-ideal(ideal,var);
% splits the ideal into two simpler ideals
begin
scalar div,ideal1,ideal2,m,x;
ideal1 := the!-empty!-ideal();
ideal2 := the!-empty!-ideal();
while not!-empty!-ideal(ideal) do
<<
m:=get!-next!-mon(ideal);
if div:=divides!-by!-var(var,m) then
add!-to!-ideal(div,ideal2)
else
add!-to!-ideal(m,ideal1);
>>;
ideal2:=rem!-mult(ideal1,ideal2);
ideal1:=insert!-var(var,ideal1);
return(list(ideal1,ideal2));
end;
symbolic procedure base!-case!-pol(ideal);
% in the base case every monomial is of the form Xi^ei
% result : the numerator polynomial of the Hilbert series
% i.e. (1-z^e1)*(1-z^e2)*...
begin
scalar p,degsofar,e,tdeg;
tdeg:=0;
for each mon in cadr ideal do tdeg:=tdeg + get!-tdeg(mon);
p:=make!-vector(tdeg,0);
putv(p,0,1);
degsofar:=0;
for each mon in cadr ideal do
<<
e:=get!-tdeg(mon);
for j:= degsofar step -1 until 0 do
putv(p,j+e,getv(p,j+e)-getv(p,j));
degsofar:=degsofar+e;
>>;
return(vector2list(p));
end;
symbolic procedure vector2list v;
% Convert a vector v to a list. No type checking is done.
begin scalar u;
for i:= upbv v step -1 until 0 do u := getv(v,i) . u;
return u;
end;
endmodule;
module hilbertp; % Computing Hilbert Polynomial from the Hilbert series.
Comment
Authors: H. Michael Moeller, Fernuniversitaet
Hagen, Germany
email: MA105@DHAFEU11.bitnet
H. Melenk, Konrad-Zuse-Zentrum
Berlin, Germany
email: melenk@sc.ZIB-Berlin.de
;
symbolic procedure newhilbi (bas,var,vars);
begin scalar baslt,n,u,grad,h,joa,a,ii,dim0,varx,dmode!*,!*modular;
% extract leading terms
baslt:= for each p in cdr bas collect
<<u := hgspliteval list (p,vars); cadr u>>;
% replace non atomic elements in the varlist by gensyms
for each x in cdr vars do
if (pairp x) then
baslt := cdr subeval list(list('equal,x,gensym()),
'list . baslt);
% compute the Hilbertseries
joa := hilbsereval list ('list . baslt,var);
% get the Hilbert polynomial
grad := deg(joa,var);
a:= for i:=0:grad collect coeffn (joa,var,i);
n:= length cdr vars;
%dim0 := (for i:=1:n product (var + i))/( for i:=1:n product i);
varx := !*a2f var;
dim0 := 1;
for i:=1:n do dim0:= multf (addd(i,varx),dim0);
dim0 := multsq(dim0 ./ 1,1 ./ (for i:=1:n product i));
h := multsq(car(a) ./ 1,dim0);
a := cdr(a);
ii := 0;
while a do
<< dim0 := multsq (dim0, addf(varx,numr simp (minus ii) )
./ addf(varx,numr simp (n -ii)));
ii := ii + 1;
if not (car a = 0) then h := addsq (h , multsq(car(a) ./ 1 ,dim0));
a := cdr(a) >>;
return mk!*sq h;
end;
symbolic procedure psnewhilbi (u);
begin scalar zz,pl,vl;
pl:=reval car u;
if cdr u then vl:=listeval(cadr u,nil);
zz := 'list.groebnervars(cdr pl,vl);
return newhilbi(pl,'x,zz)
end;
put ('hilbertpolynomial , 'psopfn ,'psnewhilbi);
symbolic procedure hgspliteval pars;
% A variant of Gsplit from grinterf.red.
% Split a polynomial into leading monomial and reductum.
begin scalar vars,x,u,v,w,oldorder,!*factor,!*exp;
integer n,pcount!*; !*exp := t;
n := length pars;
u := reval car pars;
v := if n>1 then reval cadr pars else nil;
u := list('list,u);
w := for each j in groerevlist u
collect if eqexpr j then !*eqn2a j else j;
vars :=groebnervars(w,v);
if not vars then vdperr 'hilbertpolynomial;
oldorder := vdpinit vars;
w := a2vdp car w;
if vdpzero!? w then x := w else
% <<x := vdpfmon(vdplbc w,vdpevlmon w);
<<x := vdpfmon('( 1 . 1),vdpevlmon w);
w := vdpred w>>;
w := list('list,vdp2a x,vdp2a w);
setkorder oldorder;
return w;
end;
% simple Array access method for one- and two-dimensional arrays
% NO check against misusage is done!
% Usage: Rar:=makeRarray list dim1; Rar:=makeRarray list(dim1,dim2);
% val:=getRarray(Rar,ind1); val:=getrarray(Rar,ind1,ind2);
% putRarray(Rar,ind1,val); PutRarray(Rar,in1,ind2,val);
% for two dimensional array access only !
macro procedure functionindex2(u);
begin scalar dims,ind1,ind2;
dims := cadr u;
ind1 := caddr u;
ind2 := cadddr u;
return %%%% ((ind1 #- 1) #* cadr dims) #+ ind2;
list ('iplus2,ind2,list('itimes2,list('cadr,dims),
list('iplus2,ind1,-1)));
end;
macro procedure getrarray u;
begin scalar arry,inds;
arry := cadr(u);
inds := cddr u;
if length(inds) = 1 then
return list('getv,list('cdr,arry),car inds)
else
return list('getv,list('cdr,arry),
'functionindex2 . list('car,arry) . inds);
end;
symbolic procedure makerarray dims;
begin scalar u,n;
n := for each i in dims product i;
u := mkvect n;
return dims . u;
end;
macro procedure putrarray u;
begin scalar arry,inds, val;
arry := cadr(u);
inds := cddr u;
val := nth (u,length u); % PSL: lastcar u;
if length(inds) = 2 then
return list('putv,list('cdr,arry),car inds,val)
else
return list('putv,list('cdr,arry), 'functionindex2 .
list('car,arry).car inds. cadr inds . nil , val);
end;
procedure hilbertzerodimp(nrall, n, rarray);
begin integer i, k, count, vicount;
count := 0;
i := 0;
while ((i:= i+1) <= nrall and count < n) do
begin vicount := 1;
for k := 1:n do
if (getrarray(rarray,i,k) = 0) then vicount := vicount + 1;
if vicount = n then count := count + 1;
end;
return count = n;
end;
symbolic procedure groezerodim!?(f,n);
begin scalar explist,a;
integer r;
%explist:= list( vev(lt(f1)),...,vev(lt(fr)) );
explist:= for each fi in f collect vdpevlmon fi;
r:= length(f);
a := makerarray list(r,n);
for i:=1 step 1 until r do
for k:=1 step 1 until n do
putrarray(a ,i,k, nth(nth(explist,i),k));
return hilbertzerodimp (r, n, a);
end;
symbolic procedure gzerodimeval u;
begin scalar vl;
if cdr u then vl:=reval cadr u;
return gzerodim1(reval car u,vl)
end;
put('gzerodim!?,'psopfn,'gzerodimeval);
symbolic procedure gzerodim1(u,v);
begin scalar vars,w,z,dv,oldorder;
w := for each j in getrlist u
collect if eqexpr j then !*eqn2a j else j;
if null w then rerror(groebnr2,21,
"Empty list in HilbertPolynomial");
vars := groebnervars(w,v);
oldorder := vdpinit vars;
w := for each j in w collect f2vdp numr simp j;
w := groezerodim!? (w,length vars);
setkorder oldorder;
return if w then newhilbi(u,'x,'list . v) else nil;
end;
symbolic procedure gbtest(g);
% test, if the given set of polynomials is a Groebner basis.
% only fast to compute plausilbility test.
begin scalar fredu,g1,r,s;
g := vdplsort g;
% make abbreviated version of G
g1:= for each p in g collect
<< r := vdpred p;
if vdpzero!? r then p else
vdpsum(vdpfmon(vdplbc p,vdpevlmon p),
vdpfmon(vdplbc r,vdpevlmon r))
>>;
while g1 do
<<for each p in cdr g1 do
if not groebbuchcrit4t(vdpevlmon car g1,vdpevlmon p) then
<<s := groebspolynom(car g1,p);
if not vdpzero!? s and
null groebsearchinlist (vdpevlmon s,cddr g1)
then rerror(groebnr2,22,
"****** Not a GROEBNER basis wrt current ordering");
>>;
if groebsearchinlist(vdpevlmon car g1,cdr g1) then
fredu := t;
g1 := cdr g1;
>>;
if fredu then
<<terpri!* t;
prin2t "WARNING:system is not a fully reduced GROEBNER basis";
prin2t "with current term ordering";
>>;
end;
endmodule;
module hggroeb; % Homogeneous Graded Grobner bases.
% Buchberger algorithm for homogeneous graded polynomial
% systems. d1 and d2 are positive integers (d2 may be
% infinity). Compute the basis for the sectin [d1,d2].
%
% see Becker-Weispfenning, Chapter 10.
%
% A local redefinition of the function groebspolynom is
% used to exclude pairs which do not fit into the grade interval.
fluid '(dd!-1!*, dd!-2!*);
% imported fluids.
fluid '(dipsortmode!* !*vdpinteger !*vdpmodular !*groebprot
!*gltbasis pcount!*);
global '(groebprotfile gltb gvarslast);
symbolic procedure dd_groebner!* q;
(begin scalar vars,w,np,oldorder,!*redefmsg;
integer pcount!*;
w := for each j in groerevlist u
collect if eqexpr j then !*eqn2a j else j;
vars := groebnervars(w,nil);
if null vars then rerror(groebner,4,"Empty system Groebner");
groedomainmode();
oldorder := vdpinit vars;
% cancel common denominators
w := for each j in w collect f2vdp numr simp j;
dd_homog!-check w;
if not !*vdpinteger then
<<np := t;
for each p in w do
np := if np then vdpcoeffcientsfromdomain!? p else nil;
if not np then <<!*vdpmodular:= nil; !*vdpinteger := t>>;
>>;
if !*groebprot then <<groebprotfile := '(list)>>;
w := dd!-bbg(w);
if !*gltbasis then
gltb :=
'list . for each base in w collect
'list . for each j in base collect
vdp2a vdpfmon(a2vbc 1,vdpevlmon j);
w := 'list . for each j in w collect vdp2a j;
vdpcleanup();
gvarslast := 'list . vars;
return w;
end)
where dd!-1!*=ieval car q,
dd!-2!*=reval cadr q,
u=reval caddr q;
put('dd_groebner,'psopfn,'dd_groebner!*);
put('dd_groebner,'number!-of!-args,3);
symbolic procedure dd!-bbg w;
begin scalar r;
copyd('groebspolynom,'dd!-groebspolynom);
r:=errorset({'groebner2,mkquote w,nil},t,nil);
copyd('groebspolynom,'true!-groebspolynom);
if errorp r then rederr "dd_groebner failed";
return caar r;
end;
symbolic procedure dd_homog!-check w;
begin scalar d,q,tst,q;
if not memq(dipsortmode!*,'(graded weighted gradlex revgradlex))
then typerr(dipsortmode!*,"term order for dd_groebner");
for each p in w do
<<q:=p; p:=vdppoly p;
d:=ev!-gamma(dipevlmon p); p:=dipmred p;
while not dipzero!? p do
<<tst:=tst or d neq ev!-gamma(dipevlmon p); p:=dipmred p>>;
if tst then typerr(vdp2a q,"homogeneous polynomial");
>>;
end;
copyd('true!-groebspolynom,'groebspolynom);
symbolic procedure dd!-groebspolynom(p1,p2);
(if (dd!-1!* <= d and (dd!-2!*='infinity or d <= dd!-2!*)) then
true!-groebspolynom(p1,p2) else a2vdp 0)
where d=ev!-gamma vevlcm(vdpevlmon p1, vdpevlmon p2);
endmodule;
end;