module gentran; % Header module for gentran package.
% Author: Barbara L. Gates.
% Modifications by: Michael C. Dewar.
create!-package('(gentran utils intrfc templt pre gparser redlsp segmnt
lspfor lsprat lspc lsppasc goutput),
'(contrib gentran));
symbolic smacro procedure smallfloatp u;
% Returns true if <structure> is a small rounded.
atom u;
endmodule;
module utils; %% GENTRAN Utility Functions %%
%% Author: Barbara L. Gates %%
%% December 1986 %%
% Entry Points: ALL FUNCTIONS
symbolic$
% User-Accessible Primitive Function %
operator genstmtnum$
% User-Accessible Global Variables %
global '(genstmtincr!* genstmtnum!* tablen!*)$
share genstmtincr!*, genstmtnum!*, tablen!*$
genstmtincr!* := 1$
genstmtnum!* := 25000$
tablen!* := 4$
% GENTRAN Global Variables %
global '(!*lisparithexpops!* !*lispdefops!* !*lisplogexpops!*
!*lispstmtgpops!* !*lispstmtops!* !*symboltable!*)$
!*lisparithexpops!* := '(expt minus plus quotient times)$
%LISP arithmetic expression operators
!*lispdefops!* := '(defun)$ %LISP function definition operator
!*lisplogexpops!* := '(and equal geq greaterp leq lessp neq not or)$
%LISP logical & relational exp operators
!*lispstmtgpops!* := '(prog progn)$ %LISP statement group operators
!*lispstmtops!* := '(break cond end for go read repeat
return setq stop while write)$
%LISP statement operators
!*symboltable!* := '(!*main!*)$ %symbol table
global '(!*for!*)$
%% %%
%% Statement Number Generation Function %%
%% %%
procedure genstmtnum;
genstmtnum!* := genstmtnum!* + genstmtincr!*$
%% %%
%% Symbol Table Insertion, Retrieval & Deletion Functions %%
%% %%
procedure symtabput(name, type, value);
% %
% CALL INSERTS %
% SymTabPut(subprogname, NIL, NIL ) subprogram name %
% SymTabPut(subprogname, '!*Type!*, subprogtype ) subprogram type %
% SymTabPut(subprogname, '!*Params!*, paramlist ) parameter list %
% SymTabPut(subprogname, vname, '(type d1 d2 ...)) type & dimensions %
% for variable, %
% variable range, %
% if subprogname=NIL parameter, or %
% then subprogname <-- Car symboltable function name %
% %
<<
name := name or car !*symboltable!*;
!*symboltable!* := name . delete(name, !*symboltable!*);
if type memq '(!*type!* !*params!*) then
put(name, type, value)
else if type then
begin
scalar v, vtype, vdims, dec, decs;
v := type;
vtype := car value;
vdims := cdr value;
decs := get(name, '!*decs!*);
dec := assoc(v, decs);
decs := delete(dec, decs);
vtype := vtype or (if length dec > 1 then cadr dec);
vdims := vdims or (if length dec > 2 then cddr dec);
dec := v . vtype . vdims;
put(name, '!*decs!*, append(decs, list dec))
end
>>$
procedure symtabget(name, type);
% %
% CALL RETRIEVES %
% SymTabGet(NIL, NIL ) all subprogram names %
% SymTabGet(subprogname, '!*Type!* ) subprogram type %
% SymTabGet(subprogname, '!*Params!*) parameter list %
% SymTabGet(subprogname, vname ) type & dimensions for variable, %
% variable range, parameter, or %
% function name %
% SymTabGet(subprogname, '!*Decs!* ) all types & dimensions %
% %
% if subprogname=NIL & 2nd arg is non-NIL %
% then subprogname <-- Car symboltable %
% %
<<
if type then name := name or car !*symboltable!*;
if null name then
!*symboltable!*
else if type memq '(!*type!* !*params!* !*decs!*) then
get(name, type)
else
assoc(type, get(name, '!*decs!*))
>>$
symbolic procedure declared!-as!-float u;
begin scalar decs;
return (decs := symtabget(nil,u)) and
memq(cadr decs,
'(real real!*8 real!*16
double! precision double float) )$
end$
procedure symtabrem(name, type);
% %
% CALL DELETES %
% SymTabRem(subprogname, NIL ) subprogram name %
% SymTabRem(subprogname, '!*Type!* ) subprogram type %
% SymTabRem(subprogname, '!*Params!*) parameter list %
% SymTabRem(subprogname, vname ) type & dimensions for variable, %
% variable range, parameter, or %
% function name %
% SymTabRem(subprogname, '!*Decs!* ) all types & dimensions %
% %
% if subprogname=NIL %
% then subprogname <-- Car symboltable %
% %
<<
name := name or car !*symboltable!*;
if null type then
!*symboltable!* := delete(name, !*symboltable!*) or '(!*main!*)
else if type memq '(!*type!* !*params!* !*decs!*) then
remprop(name, type)
else
begin
scalar v, dec, decs;
v := type;
decs := get(name, '!*decs!*);
dec := assoc(v, decs);
decs := delete(dec, decs);
put(name, '!*decs!*, decs)
end
>>$
procedure getvartype var;
begin
scalar type;
if pairp var then
var := car var;
type := symtabget(nil, var);
if type and length type >= 2 then
type := cadr type
else
type := nil;
return type
end$
procedure arrayeltp exp;
length symtabget(nil, car exp) > 2 or equal(car exp,'dummyarraytoken)$
%% %%
%% Functions for Making LISP Forms %%
%% %%
procedure mkassign(var, exp);
list('setq, var, exp)$
procedure mkcond pairs;
'cond . pairs$
procedure mkdef(name, params, body);
append(list('defun, name, params), body)$
procedure mkreturn exp;
list('return, exp)$
procedure mkstmtgp(vars, stmts);
if numberp vars then
'progn . stmts
else
'prog . vars . stmts$
%% LISP Form Predicates %%
procedure lispassignp stmt;
eqcar(stmt,'setq)$
procedure lispbreakp form;
eqcar(form, 'break)$
procedure lispcallp form;
pairp form$
procedure lispcondp stmt;
eqcar(stmt, 'cond)$
procedure lispdefp form;
pairp form and car form memq !*lispdefops!*$
procedure lispexpp form;
atom form or
car form memq !*lisparithexpops!* or
car form memq !*lisplogexpops!* or
not (car form memq !*lispstmtops!*) and
not (car form memq !*lispstmtgpops!*) and
not (car form memq !*lispdefops!*)$
procedure lispendp form;
eqcar( form, 'end)$
procedure lispforp form;
eqcar( form, !*for!*)$
procedure lispgop form;
eqcar( form, 'go)$
procedure lisplabelp form;
atom form$
procedure lispprintp form;
eqcar( form, 'write)$
procedure lispreadp form;
eqcar( form, 'read)$
procedure lisprepeatp form;
eqcar(form, 'repeat)$
procedure lispreturnp stmt;
eqcar( stmt, 'return)$
procedure lispstmtp form;
atom form or
car form memq !*lispstmtops!* or
( atom car form and
not (car form memq !*lisparithexpops!* or
car form memq !*lisplogexpops!* or
car form memq !*lispstmtgpops!* or
car form memq !*lispdefops!*) )$
procedure lispstmtgpp form;
pairp form and car form memq !*lispstmtgpops!*$
procedure lispstopp form;
eqcar(form, 'stop)$
procedure lispwhilep form;
eqcar(form, 'while)$
%% %%
%% Type Predicates & Type List Forming Functions %%
%% %%
procedure formtypelists varlists;
% ( (var TYPE d1 d2...) ( (TYPE (var d1 d2...) ...) %
% : ==> : %
% (var TYPE d1 d2...) ) (TYPE (var d1 d2...) ...) ) %
begin
scalar type, typelists, tl;
for each vl in varlists do
<<
type := cadr vl;
if onep length(vl := delete(type, vl)) then
vl := car vl;
if (tl := assoc(type, typelists)) then
typelists := delete(tl, typelists)
else
tl := list type;
typelists := append(typelists, list append(tl, list vl))
>>;
return typelists
end$
procedure functionformp(stmt, name);
% Does stmt contain an assignment which assigns a value to name? %
% Does it contain a RETURN exp; stmt? %
% (i.e., (SETQ name exp) -or- (RETURN exp) %
if null stmt or atom stmt then
nil
else if car stmt eq 'setq and cadr stmt eq name then
t
else if car stmt eq 'return and cdr stmt then
t
else
lispeval('or . for each st in stmt collect functionformp(st, name))$
procedure implicitp type;
begin
scalar xtype, ximp, r;
xtype := explode2 type;
ximp := explode2 'implicit;
r := t;
repeat
r := r and (car xtype eq car ximp)
until null(xtype := cdr xtype) or null(ximp := cdr ximp);
return r
end$
%% %%
%% Misc. Functions %%
%% %%
procedure insertcommas lst;
begin
scalar result;
if null lst then
return nil;
result := list car lst;
while lst := cdr lst do
result := car lst . '!, . result;
return reverse result
end$
procedure insertparens exp;
'!( . append(exp, list '!))$
procedure optype op;
get(op, '!*optype!*)$
put('minus, '!*optype!*, 'unary )$
put('not, '!*optype!*, 'unary )$
put('quotient, '!*optype!*, 'binary)$
put('expt, '!*optype!*, 'binary)$
put('equal, '!*optype!*, 'binary)$
put('neq, '!*optype!*, 'binary)$
put('greaterp, '!*optype!*, 'binary)$
put('geq, '!*optype!*, 'binary)$
put('lessp, '!*optype!*, 'binary)$
put('leq, '!*optype!*, 'binary)$
put('plus, '!*optype!*, 'nary )$
put('times, '!*optype!*, 'nary )$
put('and, '!*optype!*, 'nary )$
put('or, '!*optype!*, 'nary )$
procedure seqtogp lst;
if null lst or atom lst or lispstmtp lst or lispstmtgpp lst then
lst
else if onep length lst and pairp car lst then
seqtogp car lst
else
mkstmtgp(nil, for each st in lst collect seqtogp st)$
procedure stringtoatom a;
intern compress
foreach c in append('!" . explode2 a, list '!")
conc list('!!, c)$
procedure stripquotes a;
if atom a then
intern compress
for each c in explode2 a conc list('!!, c)
else if car a eq 'quote then
stripquotes cadr a
else
a$
symbolic procedure flushspaces c;
<< while seprp c do
<<
if c eq !$eol!$
then pterpri()
else pprin2 c;
c := readch()
>>;
c
>>;
symbolic procedure flushspacescommas c;
<< while seprp c or c eq '!, do
<<
if c eq !$eol!$
then pterpri()
else pprin2 c;
c := readch()
>>;
c
>>;
endmodule;
module intrfc; %% GENTRAN Parsing Routines & Control Functions %%
%% Author: Barbara L. Gates %%
%% December 1986 %%
% Entry Points:
% DeclareStat, GENDECS, GenInStat (GentranIn), GenOutStat
% (GentranOutPush), GenPopStat (GentranPop), GenPushStat, GenShutStat
% (GentranShut), GenStat (Gentran), (GENTRANPAIRS),
% LiteralStat, SYM!-GENTRAN, SYM!-GENTRANIN, SYM!-GENTRANOUT,
% SYM!-GENTRANSHUT,
% SYM!-GENTRANPUSH, SYM!-GENTRANPOP
fluid '(!*getdecs);
% GENTRAN Commands %
put('gentran, 'stat, 'genstat )$
put('gentranin, 'stat, 'geninstat )$
put('gentranout, 'stat, 'genoutstat )$
put('gentranshut, 'stat, 'genshutstat)$
put('gentranpush, 'stat, 'genpushstat)$
put('gentranpop, 'stat, 'genpopstat )$
% Form Analysis Function %
put('gentran, 'formfn, 'formgentran)$
put('gentranin, 'formfn, 'formgentran)$
put('gentranoutpush, 'formfn, 'formgentran)$
put('gentranshut, 'formfn, 'formgentran)$
put('gentranpop, 'formfn, 'formgentran)$
% GENTRAN Functions %
put('declare, 'stat, 'declarestat)$
put('literal, 'stat, 'literalstat)$
% GENTRAN Operators %
newtok '((!: !: !=) lsetq )$ infix ::= $
newtok '((!: != !:) rsetq )$ infix :=: $
newtok '((!: !: != !:) lrsetq)$ infix ::=:$
% User-Accessible Primitive Function %
operator gendecs$
% GENTRAN Mode Switches %
fluid '(!*gendecs)$
!*gendecs := t$
put('gendecs, 'simpfg, '((nil) (t (gendecs nil))))$
switch gendecs$
%See procedure gendecs:
fluid '(!*keepdecs)$
!*keepdecs := nil$
switch keepdecs$
% GENTRAN Flags %
fluid '(!*gentranopt !*gentranseg !*period);
!*gentranseg := t$
switch gentranseg$
% User-Accessible Global Variable %
global '(gentranlang!*)$
share gentranlang!*$
gentranlang!* := 'fortran$
% GENTRAN Global Variable %
global '(!*term!* !*stdin!* !*stdout!* !*instk!* !*currin!* !*outstk!*
!*currout!* !*outchanl!*)$
!*term!* := (t . nil)$ %terminal filepair
!*stdin!* := !*term!*$ %standard input filepair
!*stdout!* := !*term!*$ %standard output filepair
!*instk!* := list !*stdin!*$ %template file stack
!*currin!* := car !*instk!*$ %current input filepair
!*outstk!* := list !*stdout!*$ %output file stack
!*currout!* := car !*outstk!*$ %current output filepair
!*outchanl!* := list cdr !*currout!*$ %current output channel list
global '(!*do!* !*for!*)$
off quotenewnam$
!*do!* := 'do$
!*for!* := 'for$
on quotenewnam$
global '(!*lispstmtops!*);
!*lispstmtops!* := !*for!* . !*lispstmtops!*; % added by R. Liska to
% handle long FOR loops.
% REDUCE Variables %
global '(cursym!* !*vars!*)$
fluid '(!*mode)$
%% %%
%% PARSING ROUTINES %%
%% %%
%% GENTRAN Command Parsers %%
procedure genstat;
% %
% GENTRAN %
% stmt %
% [OUT f1,f2,...,fn]; %
% %
begin
scalar stmt;
flag('(out), 'delim);
stmt := xread t;
remflag('(out), 'delim);
if cursym!* eq 'out then
return list('gentran, stmt, readfargs())
else if endofstmtp() then
return list('gentran, stmt, nil)
else
gentranerr('e, nil, "INVALID SYNTAX", nil)
end$
procedure geninstat;
% %
% GENTRANIN %
% f1,f2,...,fm %
% [OUT f1,f2,...,fn]; %
% %
begin
scalar f1, f2;
flag('(out), 'delim);
f1 := xread nil;
if atom f1 then f1 := list f1 else f1 := cdr f1;
remflag('(out), 'delim);
if cursym!* eq 'out then
f2 := readfargs();
return list('gentranin, f1, f2)
end$
procedure genoutstat;
% %
% GENTRANOUT f1,f2,...,fn; %
% %
list('gentranoutpush, readfargs())$
procedure genshutstat;
% %
% GENTRANSHUT f1,f2,...,fn; %
% %
list('gentranshut, readfargs())$
procedure genpushstat;
% %
% GENTRANPUSH f1,f2,...,fn; %
% %
list('gentranoutpush, readfargs())$
procedure genpopstat;
% %
% GENTRANPOP f1,f2,...,fn; %
% %
list('gentranpop, readfargs())$
%% GENTRAN Function Parsers %%
newtok '((!: !:) range);
% Used for declarations with lower and upper bounds;
procedure declarestat;
% %
% DECLARE v1,v2,...,vn : type; %
% %
% DECLARE %
% << %
% v1,v2,...,vn1 : type1; %
% v1,v2,...,vn2 : type2; %
% . %
% . %
% v1,v2,...,vnn : typen %
% >>; %
% %
begin
scalar res, varlst, type;
scan();
put('range,'infix,4);
put('range,'op,'((4 4)));
if cursym!* eq '!*lsqbkt!* then
<<
scan();
while cursym!* neq '!*rsqbkt!* do
<<
varlst := list xread1 'for;
while cursym!* neq '!*colon!* do
varlst := append(varlst, list xread 'for);
type := declarestat1();
res := append(res, list(type . varlst));
if cursym!* eq '!*semicol!* then scan()
>>;
scan()
>>
else
<<
varlst := list xread1 'for;
while cursym!* neq '!*colon!* do
varlst := append(varlst, list xread 'for);
type := declarestat1();
res := list (type . varlst);
>>;
if not endofstmtp() then
gentranerr('e, nil, "INVALID SYNTAX", nil);
remprop('range,'infix);
remprop('range,'op);
return ('declare . res)
end$
procedure declarestat1;
begin
scalar res;
scan();
if endofstmtp() then
return nil;
if cursym!* eq 'implicit then
<<
scan();
res := intern compress append(explode 'implicit! , explode cursym!*)
>>
else
res := cursym!*;
scan();
if cursym!* eq 'times then
<<
scan();
if numberp cursym!* then
<<
res := intern compress append(append(explode res, explode '!*),
explode cursym!*);
scan()
>>
else
gentranerr('e, nil, "INVALID SYNTAX", nil)
>>;
return res
end$
procedure literalstat;
% %
% LITERAL arg1,arg2,...,argn; %
% %
begin
scalar res;
repeat
res := append(res, list xread t)
until endofstmtp();
if atom res then
return list('literal, res)
else if car res eq '!*comma!* then
return rplaca(res, 'literal)
else
return('literal . res)
end$
%% %%
%% Symbolic Mode Functions %%
%% %%
procedure sym!-gentran form;
lispeval formgentran(list('gentran, form, nil), !*vars!*, !*mode)$
procedure sym!-gentranin flist;
if flist then
lispeval formgentran(list('gentranin,
(if atom flist then list flist else flist),
nil),
!*vars!*, !*mode)$
procedure sym!-gentranout flist;
lispeval formgentran(list('gentranoutpush,
if atom flist then list flist else flist),
!*vars!*, !*mode)$
procedure sym!-gentranshut flist;
lispeval formgentran(list('gentranshut,
if atom flist then list flist else flist),
!*vars!*, !*mode)$
procedure sym!-gentranpush flist;
lispeval formgentran(list('gentranoutpush,
if atom flist then list flist else flist),
!*vars!*, !*mode)$
procedure sym!-gentranpop flist;
lispeval formgentran(list('gentranpop,
if atom flist then list flist else flist),
!*vars!*, !*mode)$
%% %%
%% Form Analysis Functions %%
%% %%
procedure formgentran(u, vars, mode);
(car u) . foreach arg in cdr u collect formgentran1(arg, vars, mode)$
symbolic procedure formgentran1(u, vars, mode);
if pairp u and car u eq '!:dn!: then
mkquote <<precmsg length explode abs car(u := cdr u);
decimal2internal(car u,cdr u)>>
else if pairp u and car u eq '!:rd!: then mkquote u
else if pairp u and not listp u then
if !*getdecs
then formgentran1(list ('declare,list(cdr u,car u)),vars,mode)
% Amended mcd 13/11/87 to allow local definitions.
else gentranerr('e,u,
"Scalar definitions cannot be translated",nil)
else if atom u then
mkquote u
else if car u eq 'eval then
if mode eq 'algebraic then
list('aeval, form1(cadr u, vars, mode))
else
form1(cadr u, vars, mode)
else if car u memq '(lsetq rsetq lrsetq) then
% (LSETQ (var s1 s2 ... sn) exp) %
% -> (SETQ (var (EVAL s1) (EVAL s2) ... (EVAL sn)) exp) %
% (RSETQ var exp) %
% -> (SETQ var (EVAL exp)) %
% (LRSETQ (var s1 s2 ... sn) exp) %
% -> (SETQ (var (EVAL s1) (EVAL s2) ... (EVAL sn)) (EVAL exp)) %
begin
scalar op, lhs, rhs;
op := car u;
lhs := cadr u;
rhs := caddr u;
if op memq '(lsetq lrsetq) and listp lhs then
lhs := car lhs . foreach s in cdr lhs collect list('eval, s);
if op memq '(rsetq lrsetq) then
rhs := list('eval, rhs);
return formgentran1(list('setq, lhs, rhs), vars, mode)
end
else
'list . foreach elt in u
collect formgentran1(elt, vars, mode)$
%% %%
%% Control Functions %%
%% %%
%% Command Control Functions %%
symbolic procedure gentran(forms, flist);
begin scalar !:print!-prec!: ; % Gentran ignores print_precision
if flist then
lispeval list('gentranoutpush, list('quote, flist));
forms := preproc list forms;
if gentranparse(forms) then
<<
forms := lispcode forms;
if smemq('differentiate,forms) then
<<load!-package 'adiff; forms := adiff!-eval forms>>;
if !*gentranopt then forms := opt forms;
if !*gentranseg then forms := seg forms;
apply1(get(gentranlang!*,'formatter) or get('fortran,'formatter),
apply1(get(gentranlang!*,'codegen) or get('fortran,'codegen),
forms))
>>;
if flist then
<<
flist := car !*currout!* or ('list . cdr !*currout!*);
lispeval '(gentranpop '(nil));
return flist
>>
else
return car !*currout!* or ('list . cdr !*currout!*)
end$
procedure gentranin(inlist, outlist);
begin
scalar ich;
foreach f in inlist do
if pairp f then
gentranerr('e, f, "Wrong Type of Arg", nil)
else if not !*filep!* f and f neq car !*stdin!* then
gentranerr('e, f, "Nonexistent Input File", nil);
if outlist then
lispeval list('gentranoutpush, mkquote outlist);
ich := rds nil;
foreach f in inlist do
<<
if f = car !*stdin!* then
pushinputstack !*stdin!*
else if retrieveinputfilepair f then
gentranerr('e, f, "Template File Already Open for Input", nil)
else
pushinputstack makeinputfilepair f;
rds cdr !*currin!*;
lispapply(get(gentranlang!*,'proctem) or get('fortran,'proctem),
nil);
% if gentranlang!* eq 'ratfor then
% procrattem()
% else if gentranlang!* eq 'c then
% procctem()
% else
% procforttem();
rds ich;
popinputstack()
>>;
if outlist then
<<
outlist := car !*currout!* or ('list . cdr !*currout!*);
lispeval '(gentranpop '(nil));
return outlist
>>
else
return car !*currout!* or ('list . cdr !*currout!*)
end$
procedure gentranoutpush flist;
<<
if onep length (flist := fargstonames(flist, t)) then
flist := car flist;
pushoutputstack (retrieveoutputfilepair flist
or makeoutputfilepair flist);
car !*currout!* or ('list . cdr !*currout!*)
>>$
procedure gentranshut flist;
% close, delete, [output to T] %
begin
scalar trm;
flist := fargstonames(flist, nil);
trm := if onep length flist then (car flist = car !*currout!*)
else if car !*currout!*
then (if car !*currout!* member flist then t)
else lispeval('and . foreach f in cdr !*currout!*
collect (if f member flist then t));
deletefromoutputstack flist;
if trm and !*currout!* neq !*stdout!* then
pushoutputstack !*stdout!*;
return car !*currout!* or ('list . cdr !*currout!*)
end$
procedure gentranpop flist;
<<
if 'all!* member flist then
while !*outstk!* neq list !*stdout!* do
lispeval '(gentranpop '(nil))
else
<<
flist := fargstonames(flist,nil);
if onep length flist then
flist := car flist;
popoutputstack flist
>>;
car !*currout!* or ('list . cdr !*currout!*)
>>$
%% Mode Switch Control Function %%
procedure gendecs name;
% Hacked 15/11/88 to make it actually tidy up symbol table properly.
% KEEPDECS also added. mcd.
%%%%%%%%%%%%%%%%%%%%%%%%
% %
% ON/OFF GENDECS; %
% %
% GENDECS subprogname; %
% %
%%%%%%%%%%%%%%%%%%%%%%%%
<<
if name equal 0 then name := nil;
apply1(get(gentranlang!*,'formatter) or get('fortran,'formatter),
apply1(get(gentranlang!*,'gendecs) or get('fortran,'gendecs),
symtabget(name, '!*decs!*)));
% if gentranlang!* eq 'ratfor then
% formatrat ratdecs symtabget(name, '!*decs!*)
% else if gentranlang!* eq 'c then
% formatc cdecs symtabget(name, '!*decs!*)
% else
% formatfort fortdecs symtabget(name, '!*decs!*);
% Sometimes it would be handy to know just what we've generated.
% If the switch KEEPDECS is on (usually off) this is done.
if null !*keepdecs then
<<
symtabrem(name, '!*decs!*);
symtabrem(name, '!*type!*);
>>;
symtabrem(name, nil);
>>$
%% Misc. Control Functions %%
procedure gentranpairs prs;
% %
% GENTRANPAIRS dottedpairlist; %
% %
begin
scalar formatfn,assignfn;
formatfn:=get(gentranlang!*,'formatter) or get('fortran,'formatter);
assignfn:=get(gentranlang!*,'assigner) or get('fortran,'assigner);
return
for each pr in prs do
apply1(formatfn,apply2(assignfn,lispcodeexp(car pr, !*period),
lispcodeexp(cdr pr, !*period)))
end;
%procedure gentranpairs prs;
%% %
%% GENTRANPAIRS dottedpairlist; %
%% %
%if gentranlang!* eq 'ratfor then
% for each pr in prs do
% formatrat mkfratassign(lispcodeexp(car pr, !*period),
% lispcodeexp(cdr pr, !*period))
%else if gentranlang!* eq 'c then
% for each pr in prs do
% formatc mkfcassign(lispcodeexp(car pr, !*period),
% lispcodeexp(cdr pr, !*period))
%else
% for each pr in prs do
% formatfort mkffortassign(lispcodeexp(car pr, !*period),
% lispcodeexp(cdr pr, !*period))$
%% %%
%% Input & Output File Stack Manipulation Functions %%
%% %%
%% Input Stack Manipulation Functions %%
procedure makeinputfilepair fname;
(fname . open(mkfil fname, 'input))$
procedure retrieveinputfilepair fname;
retrievefilepair(fname, !*instk!*)$
procedure pushinputstack pr;
<<
!*instk!* := pr . !*instk!*;
!*currin!* := car !*instk!*;
!*instk!*
>>$
procedure popinputstack;
begin scalar x;
x := !*currin!*;
if cdr !*currin!* then close cdr !*currin!*;
!*instk!* := cdr !*instk!* or list !*stdin!*;
!*currin!* := car !*instk!*;
return x
end$
%% Output File Stack Manipulation Functions %%
procedure makeoutputfilepair f;
if atom f then
(f . open(mkfil f, 'output))
else
aconc((nil . f) .
foreach fn in f
conc if not retrieveoutputfilepair fn
then list makeoutputfilepair fn,
(nil . nil))$
procedure retrieveoutputfilepair f;
if atom f
then retrievefilepair(f, !*outstk!*)
else retrievepfilepair(f, !*outstk!*)$
procedure pushoutputstack pr;
<<
!*outstk!* := if atom cdr pr
then (pr . !*outstk!*)
else append(pr, !*outstk!*);
!*currout!* := car !*outstk!*;
!*outchanl!* := if car !*currout!*
then list cdr !*currout!*
else foreach f in cdr !*currout!*
collect cdr retrieveoutputfilepair f;
!*outstk!*
>>$
procedure popoutputstack f;
% [close], remove top-most exact occurrence, reset vars %
begin
scalar pr, s;
if atom f then
<<
pr := retrieveoutputfilepair f;
while !*outstk!* and car !*outstk!* neq pr do
if caar !*outstk!* then
<<s := aconc(s, car !*outstk!*); !*outstk!* := cdr !*outstk!*>>
else
<<
while car !*outstk!* neq (nil . nil) do
<< s := aconc(s, car !*outstk!*);
!*outstk!* := cdr !*outstk!* >>;
s := aconc(s, car !*outstk!*);
!*outstk!* := cdr !*outstk!*
>>;
if !*outstk!* then s := append(s, cdr !*outstk!*);
!*outstk!* := s;
if not retrieveoutputfilepair f then close cdr pr
>>
else
<<
pr := foreach fn in f collect retrieveoutputfilepair fn;
while !*outstk!* and not filelistequivp(cdar !*outstk!*, f) do
if caar !*outstk!* then
<< s := aconc(s, car !*outstk!*);
!*outstk!* := cdr !*outstk!* >>
else
<<
while car !*outstk!* neq (nil . nil) do
<< s := aconc(s, car !*outstk!*);
!*outstk!* := cdr !*outstk!* >>;
s := aconc(s, car !*outstk!*);
!*outstk!* := cdr !*outstk!*
>>;
if !*outstk!* then
<<
while car !*outstk!* neq (nil . nil) do
!*outstk!* := cdr !*outstk!*;
s := append(s, cdr !*outstk!*)
>>;
!*outstk!* := s;
foreach fn in f do pr := delete(retrieveoutputfilepair fn, pr);
foreach p in pr do close cdr p
>>;
!*outstk!* := !*outstk!* or list !*stdout!*;
!*currout!* := car !*outstk!*;
!*outchanl!* := if car !*currout!*
then list cdr !*currout!*
else foreach fn in cdr !*currout!*
collect cdr retrieveoutputfilepair fn;
return f
end$
procedure deletefromoutputstack f;
begin
scalar s, pr;
if atom f then
<<
pr := retrieveoutputfilepair f;
while retrieveoutputfilepair f do
!*outstk!* := delete(pr, !*outstk!*);
close cdr pr;
foreach pr in !*outstk!* do
if listp cdr pr and pairp cdr pr and f member cdr pr then
rplacd(pr, delete(f, cdr pr)) % Fixed 26-2-88 mcd
>>
else
<<
foreach fn in f do
deletefromoutputstack fn;
foreach fn in f do
foreach pr in !*outstk!* do
if pairp cdr pr and fn member cdr pr then
rplacd(pr, delete(fn, cdr pr))
>>;
while !*outstk!* do
if caar !*outstk!* and caar !*outstk!* neq 't then
<<
s := aconc(s, car !*outstk!*);
!*outstk!* := cdr !*outstk!*
>>
else if cdar !*outstk!* and cdar !*outstk!* neq '(t) then
<<
while car !*outstk!* neq (nil . nil) do
<<
s := aconc(s, car !*outstk!*);
!*outstk!* := cdr !*outstk!*
>>;
s := aconc(s, car !*outstk!*);
!*outstk!* := cdr !*outstk!*
>>
else
if cdr !*outstk!* then !*outstk!* := cddr !*outstk!*
else !*outstk!*:=nil;
!*outstk!* := s or list !*stdout!*;
!*currout!* := car !*outstk!*;
!*outchanl!* := if car !*currout!*
then list cdr !*currout!*
else foreach fn in cdr !*currout!*
collect cdr retrieveoutputfilepair fn;
return f
end$
procedure retrievefilepair(fname, stk);
if null stk then
nil
else if caar stk and mkfil fname = mkfil caar stk then
car stk
else
retrievefilepair(fname, cdr stk)$
procedure retrievepfilepair(f, stk);
if null stk then
nil
else if null caar stk and filelistequivp(f, cdar stk) then
list(car stk, (nil . nil))
else
retrievepfilepair(f, cdr stk)$
procedure filelistequivp(f1, f2);
if pairp f1 and pairp f2 then
<<
f1 := foreach f in f1 collect mkfil f;
f2 := foreach f in f2 collect mkfil f;
while (car f1 member f2) do
<<
f2 := delete(car f1, f2);
f1 := cdr f1
>>;
null f1 and null f2
>>$
%%
procedure !*filep!* f;
not errorp errorset(list('close,
list('open,list('mkfil,mkquote f),''input)),
nil,nil)$
%% %%
%% Scanning & Arg-Conversion Functions %%
%% %%
procedure endofstmtp;
if cursym!* member '(!*semicol!* !*rsqbkt!* end) then t$
procedure fargstonames(fargs, openp);
begin
scalar names;
fargs :=
for each a in fargs conc
if a memq '(nil 0) then
if car !*currout!* then
list car !*currout!*
else
cdr !*currout!*
else if a eq 't then
list car !*stdout!*
else if a eq 'all!* then
for each fp in !*outstk!* conc
(if car fp and not(fp equal !*stdout!*) then list car fp)
else if atom a then
if openp then
<<
if null getd 'bpsmove and
% That essentially disables the test on IBM SLISP
% where it causes chaos with the PDS management.
!*filep!* a and null assoc(a, !*outstk!*) then
gentranerr('w, a, "OUTPUT FILE ALREADY EXISTS",
"CONTINUE?");
list a
>>
else
if retrieveoutputfilepair a then
list a
else
gentranerr('w, a, "File not Open for Output", nil)
else
gentranerr('e, a, "WRONG TYPE OF ARG", nil);
repeat
if not (car fargs member names) then
names := append(names, list car fargs)
until null (fargs := cdr fargs);
return names
end$
procedure readfargs;
begin
scalar f;
while not endofstmtp() do
f := append(f, list xread t);
return f or list nil
end$
endmodule;
module templt; %% GENTRAN Template Processing Routines %%
%% Author: Barbara L. Gates %%
%% December 1986 %%
% Entry Points: ProcCTem, ProcFortTem, ProcRatTem
% Moved to separate language modules - JHD December 1987
symbolic$
% User-Accessible Global Variables %
global '(gentranlang!* !$!#)$
fluid '(!*gendecs)$
share gentranlang!*, !$!#$
gentranlang!* := 'fortran$
!$!# := 0$
switch gendecs$
global '(!*space!* !*stdout!* !$eof!$ !$eol!$)$
% GENTRAN Global Variables %
!*space!* := '! $
fluid '(!*mode)$
%% %%
%% Text Processing Routines %%
%% %%
%% %%
%% Template File Active Part Handler %%
%% %%
symbolic procedure procactive;
% active parts: ;BEGIN; ... ;END; %
% eof markers: ;END; %
begin scalar c, buf, mode, och, !*int,!*errcont;
% By turning INT off we avoid some excess blank lines, and avoid trouble
% with END being caught by BEGIN1. We use !*errcont to recover
% gracefully when an error is caught in the template.
!*errcont := 't;
c := readch();
if c eq 'e then
if (c := readch()) eq 'n then
if (c := readch()) eq 'd then
if (c := readch()) eq '!; then
return !$eof!$
else buf := '!;end
else buf := '!;en
else buf := '!;e
else if c eq 'b then
if (c := readch()) eq 'e then
if (c := readch()) eq 'g then
if (c := readch()) eq 'i then
if (c := readch()) eq 'n then
if (c := readch()) eq '!; then
<<
mode := !*mode;
!*mode := 'algebraic;
och := wrs cdr !*stdout!*;
begin1();
wrs och;
!*mode := mode;
linelength 150;
return if (c := readch()) eq !$eol!$
then readch()
else c
>>
else buf := '!;begin
else buf := '!;begi
else buf := '!;beg
else buf := '!;be
else buf := '!;b
else buf := '!;;
pprin2 buf;
return c
end$
endmodule;
module pre; %% GENTRAN Preprocessing Module %%
%% Author: Barbara L. Gates %%
%% December 1986 %%
% Entry Point: Preproc
symbolic$
procedure preproc exp;
begin
scalar r;
r := preproc1 exp;
if r then
return car r
else
return r
end$
% This switch causes gentran to attempt to automatically generate type
% declarations, without use of the 'declare' statement. mcd 12/11/87.
fluid '(!*getdecs)$
!*getdecs := nil$
switch getdecs$
% This global variable is the default type given when 'getdecs' is on:
global '(deftype!*)$
share deftype!*$
deftype!* := 'real$
% Bfloat defined in arith.red.
% symbolic procedure bfloat x; if floatp x then fl2bf x else
% normbf(if atom x then read!:num x else x);
symbolic procedure preproc1 exp;
% Amended mcd 12/11/87,13/11/87,14/10/91.
if atom exp then
list exp
else if car exp = '!:rd!: then
list if smallfloatp cdr exp then bfloat cdr exp else exp
else if car exp = '!:dn!: then
preproc1 decimal2internal(cadr exp,cddr exp)
else if car exp eq '!*sq then
% (!*SQ dpexp) --> (PREPSQ dpexp) %
preproc1 prepsq cadr exp
else if car exp eq 'procedure then
<<
% Store subprogram name & parameters in symbol table %
symtabput(cadr exp, '!*params!*, car cddddr exp);
% Store subprogram type and parameters types in symbol table
% if !*getdecs switch is on. Use default type unless
% procedure is declared as either:
% INTEGER PROCEDURE ... or REAL PROCEDURE ...
if !*getdecs then
if caddr exp memq '(real integer) then
<<
symtabput(cadr exp,cadr exp,list caddr exp);
for each v in car cddddr exp do
symtabput(cadr exp,v,list caddr exp);
list nconc(list ('procedure,cadr exp,'nil),
for each e in cdddr exp conc preproc1 e)
>>
else
<<
for each v in car cddddr exp do
symtabput(cadr exp,v,list deftype!*);
list for each e in exp
conc preproc1 e
>>
else
list for each e in exp
conc preproc1 e
>>
else if car exp eq 'declare then
<<
% Store type declarations in symbol table %
exp := car preproc1 cdr exp;
exp := preprocdec exp;
for each dec in exp do
for each var in cdr dec do
if car dec memq '(subroutine function) then
symtabput(var, '!*type!*, car dec)
else
symtabput(nil,
if atom var then var else car var,
if atom var then list car dec
else (car dec . cdr var));
nil
>>
else if car exp eq 'setq and pairp caddr exp and
memq(caaddr exp,'(cond progn) ) then
migrate!-setqs exp
else if memq(car exp, '(plus times difference quotient minus) ) then
begin scalar simp_exp;
return if pairp numr (simp_exp:=simp!* exp)
and memq(car numr simp_exp,'(!:cr!: !:crn!: !:gi!:)) then
if onep denr simp_exp then
list numr simp_exp
else
list list('quotient,numr simp_exp,
car preproc1 prepsq !*f2q denr simp_exp)
else
list for each e in exp conc preproc1 e;
end
else
<<
% The next statement stores the index of a for loop in the symbol
% table, assigning them the type integer,
% if the switch 'getdecs' is on.
if !*getdecs and (car exp memq '(!~for for)) then
symtabput(nil,cadr exp, '(integer));
list for each e in exp
conc preproc1 e
>>$
symbolic procedure preprocdec arg;
% (TIMES type int) --> type!*int %
% (IMPLICIT type) --> IMPLICIT! type %
% (DIFFERENCE v1 v2) --> v1!-v2 %
if atom arg then
arg
else if car arg eq 'times then
if equal(length arg,3) and fixp(caddr arg) then
intern
compress
append( append( explode cadr arg, explode '!* ),
explode caddr arg )
else
begin scalar result;
for i:=1:length(arg) do
result := append(result,
if equal(nth(arg,i),'times)
then '(!*)
else explode nth(arg,i));
return intern compress result;
end
else if car arg eq 'implicit then
intern
compress
append( explode 'implicit! , explode preprocdec cadr arg )
else if car arg eq 'difference then
intern
compress
append( append( explode cadr arg, explode '!- ),
explode caddr arg )
else
for each a in arg collect
preprocdec a$
symbolic procedure migrate!-setqs exp;
% Move setq's within a progn or cond so that we can translate things
% like gentran x := if ... then ...
list migrate!-setqs1(cadr exp,caddr exp)$
symbolic procedure migrate!-setqs1(var,exp);
if atom exp then
preproc list('setq,var,exp)
else if eqcar(exp,'cond) then
('cond . for each u in cdr exp collect
list (preproc car u,migrate!-setqs1(var,cadr u)) )
else if eqcar(exp,'progn) then
reverse rplaca(exp := reverse exp,migrate!-setqs1(var,car exp))
else
preproc list('setq,var,exp)$
endmodule;
module gparser; %% GENTRAN Parser Module %%
%% Author: Barbara L. Gates %%
%% December 1986 %%
% Entry Point: GentranParse
symbolic$
% GENTRAN Global Variable %
global '(!*reservedops!*)$
!*reservedops!* := '(and rblock cond difference equal expt for geq go
greaterp leq lessp mat minus neq not or plus
procedure progn quotient read recip repeat return
setq times while write)$ %reserved operators
symbolic procedure gentranparse forms;
begin scalar found_error;
for each f in forms do
if not(gpstmtp f or gpexpp f or gpdefnp f) then
<<
gentranerr('e, f, "CANNOT BE TRANSLATED", nil);
% If we are processing a template (for example) then this will
% not result in a hard error, so make Gentran aware that
% something went wrong:
found_error := 't;
>>;
return not found_error;
end$
procedure gpexpp exp;
% exp ::= id | number | (PLUS exp exp') | (MINUS exp) | %
% (DIFFERENCE exp exp) | (TIMES exp exp exp') | %
% (RECIP exp) |(QUOTIENT exp exp) | (EXPT exp exp) | (id arg') %
if atom exp then
idp exp or numberp exp
else if car exp memq '(!:rd!: !:cr!: !:crn!: !:gi!:) then
t
else
if car exp eq 'plus then
length exp >= 2 and gpexpp cadr exp and gpexp1p cddr exp
else if car exp memq '(minus recip) then
length exp=2 and gpexpp cadr exp
else if car exp memq '(difference quotient expt) then
length exp=3 and gpexpp cadr exp and gpexpp caddr exp
else if car exp eq 'times then
length exp >= 3 and gpexpp cadr exp and gpexpp caddr exp and
gpexp1p cdddr exp
else if car exp eq '!:rd!: then t
else if car exp memq '(!:cr!: !:crn!: !:gi!:) then t
else if unresidp car exp then
gparg1p cdr exp$
procedure gpexp1p exp;
% exp' ::= exp exp' | eps %
null exp or (gpexpp car exp and gpexp1p cdr exp)$
procedure gplogexpp exp;
% logexp ::= id | (EQUAL exp exp) | (NEQ exp exp) | %
% (GREATERP exp exp) |(GEQ exp exp) | (LESSP exp exp) | %
% (LEQ exp exp) | (NOT logexp) | (AND logexp logexp logexp')%
% | (OR logexp logexp logexp') | (id arg') %
if atom exp then
idp exp
else
if car exp memq '(equal neq greaterp geq lessp leq) then
length exp=3 and gpexpp cadr exp and gpexpp caddr exp
else if car exp eq 'not then
length exp=2 and gplogexpp cadr exp
else if car exp memq '(and or) then
length exp >= 3 and gplogexpp cadr exp and gplogexpp caddr exp
and gplogexp1p cdddr exp
else if unresidp car exp then
gparg1p cdr exp$
procedure gplogexp1p exp;
% logexp' ::= logexp logexp' | eps %
null exp or (gplogexpp car exp and gplogexp1p cdr exp)$
procedure gpargp exp;
% arg ::= string | exp | logexp %
stringp exp or gpexpp exp or gplogexpp exp$
procedure gparg1p exp;
% arg' ::= arg arg' | eps %
null exp or (gpargp car exp and gparg1p cdr exp)$
procedure gpvarp exp;
% var ::= id | (id exp exp') %
if atom exp then
idp exp
else
if unresidp car exp then
length exp >= 2 and gpexpp cadr exp and gpexp1p cddr exp$
procedure gplistp exp;
% list ::= (exp exp') %
if pairp exp then
length exp >= 1 and gpexpp car exp and gpexp1p cdr exp$
procedure gplist1p exp;
% list' ::= list list' | eps %
null exp or (gplistp car exp and gplist1p cdr exp)$
procedure gpid1p exp;
% id' ::= id id' | eps %
null exp or (idp car exp and gpid1p cdr exp)$
procedure gpstmtp exp;
% stmt ::= id | (SETQ setq') | (COND cond') | (WHILE logexp stmt) | %
% (REPEAT stmt logexp) | (FOR var (exp exp exp) DO stmt) | %
% (GO id) | (RETURN arg) | (WRITE arg arg') | %
% (PROGN stmt stmt') | (BLOCK (id') stmt') | (id arg') %
if atom exp then
idp exp
else if car exp memq '(!:rd!: !:cr!: !:crn!: !:gi!:) then
nil
else
if car exp eq 'setq then
gpsetq1p cdr exp
else if car exp eq 'cond then
gpcond1p cdr exp
else if car exp eq 'while then
length exp=3 and gplogexpp cadr exp and gpstmtp caddr exp
else if car exp eq 'repeat then
length exp=3 and gpstmtp cadr exp and gplogexpp caddr exp
else if car exp eq 'for then
length exp=5 and gpvarp cadr exp and pairp caddr exp and
(length caddr exp=3 and gpexpp car caddr exp and
gpexpp cadr caddr exp and gpexpp caddr caddr exp) and
cadddr exp eq 'do and gpstmtp car cddddr exp
else if car exp eq 'go then
length exp=2 and idp cadr exp
else if car exp eq 'return then
length exp=2 and gpargp cadr exp
else if car exp eq 'write then
length exp >= 2 and gpargp cadr exp and gparg1p cddr exp
else if car exp eq 'progn then
length exp >= 2 and gpstmtp cadr exp and gpstmt1p cddr exp
else if car exp eq 'rblock then
length exp >= 2 and gpid1p cadr exp and gpstmt1p cddr exp
else if unresidp car exp then
gparg1p cdr exp$
procedure gpsetq1p exp;
% setq' ::= id setq'' | (id exp exp') setq''' %
if exp and length exp=2 then
if atom car exp then
idp car exp and gpsetq2p cdr exp
else
(length car exp >= 2 and idp car car exp
and unresidp car car exp and gpexpp cadr car exp
and gpexp1p cddr car exp) and gpsetq3p cdr exp$
procedure gpsetq2p exp;
% setq'' ::= (MAT list list') | setq''' %
if exp then
if eqcar(car exp, 'mat) then
onep length exp and (gplistp cadar exp and gplist1p cddar exp)
else
gpsetq3p exp$
procedure gpsetq3p exp;
% setq''' ::= (FOR var (exp exp exp) forop exp) | (READ) | exp | logexp
if exp and onep length exp then
gpexpp car exp or
gplogexpp car exp or
(if caar exp eq 'for then
length car exp=5 and gpvarp cadar exp and
(pairp caddar exp and length caddar exp=3 and
gpexpp car caddar exp and gpexpp cadr caddar exp and
gpexpp caddr caddar exp) and gpforopp car cdddar exp and
gpexpp cadr cdddar exp
else if caar exp eq 'read then
onep length car exp)$
procedure gpforopp exp;
% forop ::= SUM | PRODUCT %
exp memq '(sum product)$
procedure gpcond1p exp;
% cond' ::= (logexp stmt) cond' | eps %
null exp or
(pairp car exp and length car exp=2 and gplogexpp caar exp and
gpstmtp cadar exp and gpcond1p cdr exp)$
procedure gpstmt1p exp;
% stmt' ::= stmt stmt' | eps %
null exp or (gpstmtp car exp and gpstmt1p cdr exp)$
procedure gpdefnp exp;
% defn ::= (PROCEDURE id NIL EXPR (id') stmt) %
eqcar(exp, 'procedure) and length exp=6 and
idp cadr exp and null caddr exp and atom cadddr exp and
gpid1p car cddddr exp and gpstmtp cadr cddddr exp
and not idp cadr cddddr exp$
%% %%
%% Predicates %%
%% %%
procedure unresidp id;
not (id memq !*reservedops!*)$
endmodule;
module redlsp; %% GENTRAN LISP Code Generation Module %%
%% Author: Barbara L. Gates %%
%% December 1986 %%
% Entry Point: LispCode
symbolic$
% GENTRAN Global Variables %
global '(!*lisparithexpops!* !*lisplogexpops!* !*redarithexpops!*
!*redlogexpops!* !*redreswds!* !*redstmtgpops!* !*redstmtops!*)$
!*redarithexpops!*:= '(difference expt minus plus quotient recip times)$
!*redlogexpops!* := '(and equal geq greaterp leq lessp neq not or)$
!*redreswds!*:= '(and rblock cond de difference end equal expt !~for for
geq getel go greaterp leq lessp list minus neq not or
plus plus2 prog progn procedure quotient read recip
repeat return setel setk setq stop times times2
while write)$ %REDUCE reserved words
!*redstmtgpops!* := '(rblock progn)$
!*redstmtops!* := '(cond end !~for for go repeat return setq stop
while write)$
% REDUCE Non-local Variable %
fluid '(!*period);
global '(deftype!*)$
global '(!*do!* !*for!*)$
% Irena variable referenced here.
global '(irena!-constants)$
irena!-constants := nil$
procedure lispcode forms;
for each f in forms collect
if redexpp f then
lispcodeexp(f, !*period)
else if redstmtp f or redstmtgpp f then
lispcodestmt f
else if reddefp f then
lispcodedef f
else if pairp f then
for each e in f collect lispcode e$
symbolic procedure check!-for!-irena!-constants form;
if listp form and memq(car form,!*redarithexpops!*) then
for each u in cdr form do check!-for!-irena!-constants(u)
else if pairp form and car form memq '( !:cr!: !:crn!: !:gi!: )then
repeat
<<
form := cdr form;
check!-for!-irena!-constants(if atom form then form else car form);
>>
until atom form
else if form and atom form then
if memq(form,irena!-constants) then set(get(form,'!*found!-flag),t)$
symbolic procedure lispcodeexp(form, fp);
% (RECIP exp) ==> (QUOTIENT 1.0 exp) %
% (DIFFERENCE exp1 exp2) ==> (PLUS exp1 (MINUS exp2)) %
% integer ==> floating point iff PERIOD flag is ON & %
% not exponent & %
% not subscript & %
% not loop index %
% The above is a little simplistic. We have problems
% With expressions like x**(1/2)
% Now believed fixed. JHD 14.5.88
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% mcd 16-11-88. Added code to spot certain variables which irena
% needs to generate values for.
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
begin
return if numberp form then
if fp then
float form
else
form
% Substitute (EXP 1) for e - mcd 29/4/88 %
else if form eq 'e then
lispcodeexp(list('exp,1.0),fp)
else if atom form or car form memq '( !:rd!: !:cr!: !:crn!: !:gi!: )then
<<
if irena!-constants and form and not stringp form then
check!-for!-irena!-constants form;
form
>>
else if car form eq 'expt then
% Changes (EXPT E X) to (EXP X). mcd 29/4/88 %
if cadr form eq 'e then
lispcodeexp(list('exp,caddr form),fp)
else if caddr form = '(quotient 1 2) then
lispcodeexp(list('sqrt,cadr form),fp)
else if eqcar(caddr form,'!:rd!:) then begin scalar r;
r := realrat caddr form;
return if r = '(1 . 2)
then {'sqrt,lispcodeexp(cadr form, fp)}
else {'expt,lispcodeexp(cadr form, fp),
lispcodeexp({'quotient,car r,cdr r},nil)}
end
else
list('expt,lispcodeexp(cadr form,fp),lispcodeexp(caddr form,nil))
else if car form eq 'quotient then % re-instate periods if necessary
%e.g. in expressions like **(1/3)
list('quotient, lispcodeexp(cadr form, t),
lispcodeexp(caddr form, t))
else if car form eq 'recip then
if !*period then % test this not FP, for same reason as above
list('quotient, 1.0, lispcodeexp(cadr form, fp))
else
list('quotient, 1, lispcodeexp(cadr form, fp))
else if car form eq 'difference then
list('plus, lispcodeexp(cadr form, fp),
list('minus, lispcodeexp(caddr form, fp)))
else if not(car form memq !*lisparithexpops!*) and
not(car form memq !*lisplogexpops!*) then
for each elt in form collect lispcodeexp(elt, nil)
else
for each elt in form collect lispcodeexp(elt, fp)$
end$
procedure lispcodestmt form;
if atom form then
form
else if redassignp form then
lispcodeassign form
else if redreadp form then
lispcoderead form
else if redprintp form then
lispcodeprint form
else if redwhilep form then
lispcodewhile form
else if redrepeatp form then
lispcoderepeat form
else if redforp form then
lispcodefor form
else if redcondp form then
lispcodecond form
else if redreturnp form then
lispcodereturn form
else if redstmtgpp form then
lispcodestmtgp form
else if reddefp form then
lispcodedef form
else if car form eq 'literal then
for each elt in form collect lispcodeexp(elt, nil)
else
for each elt in form collect lispcodeexp(elt, !*period)$
symbolic procedure lispcodeassign form;
% Modified mcd 27/11/87 to prevent coercing things already declared as
% integers to reals when the PERIOD flag is on.
%
% (SETQ var (MAT lst lst')) --> (PROGN (SETQ (var 1 1) exp11) %
% (SETQ (var 1 2) exp12) %
% . %
% . %
% (SETQ (var m n) expmn)) %
if eqcar( caddr form, 'mat) then
begin
scalar name, r, c, relts, result,ftype;
name := cadr form;
form := caddr form;
r := c := 1;
ftype := symtabget(nil,name);
if null ftype then ftype := !*period else
<< ftype := cadr ftype;
ftype := if ftype equal 'integer or
(ftype equal 'scalar and deftype!* equal 'integer) then nil
else !*period;
>>;
while form := cdr form do
<<
relts := car form;
repeat
<<
result := mkassign(list(name, r, c),
lispcodeexp(car relts, ftype))
. result;
c := add1 c
>>
until null(relts := cdr relts);
r := add1 r;
c := 1
>>;
return mkstmtgp(nil, reverse result)
end
else begin
scalar ftype,name;
name := cadr form;
if pairp name then name := car name;
ftype := symtabget(nil,name);
if null ftype then ftype := !*period else
<< ftype := cadr ftype;
ftype := if ftype equal 'integer or
(ftype equal 'scalar and deftype!* equal 'integer) then nil
else !*period;
>>;
if cadr form eq 'e then % To prevent an 'e on the lhs
% being changed to exp(1) by lispcodeexp
% mcd 29/4/88
return mkassign('e,lispcodeexp(caddr form, ftype))
else
return mkassign(lispcodeexp(cadr form, ftype),
lispcodeexp(caddr form, ftype))
end$
procedure lispcoderead form;
% (SETQ var (READ)) --> (READ var) %
list('read, lispcodeexp(cadr form, nil))$
procedure lispcodeprint form;
'write . for each elt in cdr form collect lispcodeexp(elt, !*period)$
procedure lispcodewhile form;
'while . lispcodeexp(cadr form, !*period) .
foreach st in cddr form collect lispcodestmt st$
procedure lispcoderepeat form;
begin
scalar body, logexp;
body := reverse cdr form;
logexp := car body;
body := reverse cdr body;
return 'repeat . append(foreach st in body collect lispcodestmt st,
list lispcodeexp(logexp, !*period))
end$
procedure lispcodefor form;
% (SETQ var1 (FOR var (exp1 exp2 exp3) SUM exp))
% --> (PROGN (SETQ var1 0/0.0)
% (FOR var (exp1 exp2 exp3) DO (SETQ var1 (PLUS var1 exp))))
% (SETQ var1 (FOR var (exp1 exp2 exp3) PRODUCT exp))
% --> (PROGN (SETQ var1 1/1.0)
% (FOR var (exp1 exp2 exp3) DO (SETQ var1 (TIMES var1 exp))))
if car form eq 'for then
begin
scalar explst, stmtlst;
explst := list(cadr form, caddr form);
stmtlst := cddddr form;
return append(!*for!* .
foreach exp in explst collect lispcodeexp(exp, nil),
!*do!* .
foreach st in stmtlst collect lispcodestmt st)
end
else
begin
scalar var1, var, explst, op, exp;
var1 := cadr form;
form := caddr form;
var := cadr form;
explst := caddr form;
if cadddr form eq 'sum then
op := 'plus
else
op := 'times;
exp := car cddddr form;
form := list('prog, nil,
lispcode list('setq,var1,if op eq 'plus then 0 else 1),
lispcode list(!*for!*, var, explst, !*do!*,
list('setq, var1, list(op, var1, exp))));
return lispcodestmt form
end$
procedure lispcodecond form;
begin
scalar result, pr;
while form := cdr form do
<<
pr := car form;
pr := lispcodeexp(car pr, !*period)
. for each stmt in cdr pr collect lispcodestmt stmt;
result := pr . result
>>;
return mkcond reverse result
end$
procedure lispcodereturn form;
% (RETURN NIL) --> (RETURN) %
if form member '((return) (return nil)) then
list 'return
else
mkreturn lispcodeexp(cadr form, !*period)$
procedure lispcodestmtgp form;
% (RBLOCK () stmt1 stmt2 .. stmtm) %
% --> (PROG () stmt1 stmt2 .. stmtm) %
if car form memq '(prog rblock) then
mkstmtgp(cadr form,
for each stmt in cddr form collect lispcodestmt stmt)
else
mkstmtgp(0, for each stmt in cdr form collect lispcodestmt stmt)$
procedure lispcodedef form;
% (PROCEDURE id NIL EXPR (p1 p2 .. pn) stmt') %
% --> (DEFUN id (p1 p2 .. pn) stmt') %
if car form eq 'procedure then
mkdef(cadr form, car cddddr form, for each stmt in cdr cddddr form
collect lispcodestmt stmt)
else
mkdef(cadr form, caddr form, for each stmt in cdddr form
collect lispcodestmt stmt)$
%% REDUCE Form Predicates %%
procedure redassignp form;
eqcar(form, 'setq) and redassign1p caddr form$
procedure redassign1p form;
if atom form then
t
else if car form eq 'setq then
redassign1p caddr form
else if car form memq '(read for) then
nil
else
t$
procedure redcondp form;
eqcar(form, 'cond)$
procedure reddefp form;
eqcar(form, 'procedure)$
procedure redexpp form;
atom form or
car form memq !*redarithexpops!* or
car form memq !*redlogexpops!* or
not(car form memq !*redreswds!*)$
procedure redforp form;
if pairp form then
if car form eq 'for then
t
else if car form eq 'setq then
redfor1p caddr form$
procedure redfor1p form;
if atom form then
nil
else if car form eq 'setq then
redfor1p caddr form
else if car form eq 'for then
t$
procedure redprintp form;
eqcar(form, 'write)$
procedure redreadp form;
eqcar(form, 'setq) and redread1p caddr form$
procedure redread1p form;
if atom form then
nil
else if car form eq 'setq then
redread1p caddr form
else if car form eq 'read then
t$
procedure redrepeatp form;
eqcar(form, 'repeat)$
procedure redreturnp form;
eqcar(form, 'return)$
procedure redstmtp form;
atom form or
car form memq !*redstmtops!* or
atom car form and not(car form memq !*redreswds!*)$
procedure redstmtgpp form;
pairp form and car form memq !*redstmtgpops!*$
procedure redwhilep form;
eqcar(form, 'while)$
endmodule;
module segmnt; %% Segmentation Module %%
%% Author: Barbara L. Gates %%
%% December 1986 %%
% Entry points: Seg, MARKEDVARP, MARKVAR, TEMPVAR, UNMARKVAR
symbolic$
% User-Accessible Global Variables %
global '(gentranlang!* maxexpprintlen!* tempvarname!* tempvarnum!*
tempvartype!*)$
share gentranlang!*, maxexpprintlen!*, tempvarname!*, tempvarnum!*,
tempvartype!*$
maxexpprintlen!* := 800$
tempvarname!* := 't$
tempvarnum!* := 0$
tempvartype!* := nil$
% User-Accessible Primitive Functions %
operator markedvarp, markvar, tempvar, unmarkvar$
global '(!*do!* !*for!*)$
%% %%
%% Segmentation Routines %%
%% %%
procedure seg forms;
% exp --+--> exp %
% +--> (assign assign ... assign exp ) %
% (1) (2) (n-1) (n) %
% stmt --+--> stmt %
% +--> stmtgp %
% stmtgp --> stmtgp %
% def --> def %
for each f in forms collect
if lispexpp f then
if toolongexpp f then
segexp(f, 'unknown)
else
f
else if lispstmtp f then
segstmt f
else if lispstmtgpp f then
if toolongstmtgpp f then
seggroup f
else
f
else if lispdefp f then
if toolongdefp f then
segdef f
else
f
else
f$
procedure segexp(exp, type);
% exp --> (assign assign ... assign exp ) %
% (1) (2) (n-1) (n) %
reverse segexp1(exp, type)$
procedure segexp1(exp, type);
% exp --> (exp assign assign ... assign ) %
% (n) (n-1) (n-2) (1) %
begin
scalar res;
res := segexp2(exp, type);
unmarkvar res;
if car res = cadadr res then
<<
res := cdr res;
rplaca(res, caddar res)
>>;
return res
end$
procedure segexp2(exp, type);
% exp --> (exp assign assign ... assign ) %
% (n) (n-1) (n-2) (1) %
begin
scalar expn, assigns, newassigns, unops, op, termlist, var, tmp;
expn := exp;
while length expn=2 do
<< unops := car expn . unops; expn := cadr expn >>;
op := car expn;
for each term in cdr expn do
<<
if toolongexpp term then
<<
tmp := segexp2(term, type);
term := car tmp;
newassigns := cdr tmp
>>
else
newassigns := '();
if toolongexpp (op . term . termlist) and
termlist and
(length termlist > 1 or pairp car termlist) then
<<
unmarkvar termlist;
var := var or tempvar type;
markvar var;
assigns := mkassign(var, if onep length termlist
then car termlist
else op . termlist) . assigns;
termlist := list(var, term)
>>
else
termlist := append(termlist, list term);
assigns := append(newassigns, assigns)
>>;
expn := if onep length termlist
then car termlist
else op . termlist;
while unops do
<< expn := list(car unops, expn); unops := cdr unops >>;
if expn = exp then
<<
unmarkvar expn;
var := var or tempvar type;
markvar var;
assigns := list mkassign(var, expn);
expn := var
>>;
return expn . assigns
end$
procedure segstmt stmt;
% assign --+--> assign %
% +--> stmtgp %
% cond --+--> cond %
% +--> stmtgp %
% while --+--> while %
% +--> stmtgp %
% repeat --> repeat %
% for --+--> for %
% +--> stmtgp %
% return --+--> return %
% +--> stmtgp %
if lispassignp stmt then
if toolongassignp stmt then
segassign stmt
else
stmt
else if lispcondp stmt then
if toolongcondp stmt then
segcond stmt
else
stmt
else if lispwhilep stmt then
if toolongwhilep stmt then
segwhile stmt
else
stmt
else if lisprepeatp stmt then
if toolongrepeatp stmt then
segrepeat stmt
else
stmt
else if lispforp stmt then
if toolongforp stmt then
segfor stmt
else
stmt
else if lispreturnp stmt then
if toolongreturnp stmt then
segreturn stmt
else
stmt
else
stmt$
procedure segassign stmt;
% assign --> stmtgp %
begin
scalar var, exp, type;
var := cadr stmt;
type := getvartype var;
exp := caddr stmt;
stmt := segexp1(exp, type);
rplaca(stmt, mkassign(var, car stmt));
return mkstmtgp(nil, reverse stmt)
end$
procedure segcond condd;
% cond --+--> cond %
% +--> stmtgp %
begin
scalar tassigns, res, markedvars, type;
%if gentranlang!* eq 'c
% then type := 'int
% else type := 'logical;
type:=get(gentranlang!*,'boolean!-type) or get('fortran,'boolean!-type);
while condd := cdr condd do
begin
scalar exp, stmt;
if toolongexpp(exp := caar condd) then
<<
exp := segexp1(exp, type);
tassigns := append(cdr exp, tassigns);
exp := car exp;
markvar exp;
markedvars := exp . markedvars
>>;
stmt := for each st in cdar condd conc seg list st;
res := (exp . stmt) . res
end;
unmarkvar markedvars;
return
if tassigns then
mkstmtgp(nil, reverse(mkcond reverse res . tassigns))
else
mkcond reverse res
end$
procedure segwhile stmt;
% while --+--> while %
% +--> stmtgp %
begin
scalar logexp, stmtlst, tassigns, type, res;
logexp := cadr stmt;
stmtlst := cddr stmt;
if toolongexpp logexp then
<<
type:=get(gentranlang!*,'boolean!-type)
or get('fortran,'boolean!-type);
% if gentranlang!* eq 'c
% then type := 'int
% else type := 'logical;
tassigns := segexp1(logexp, type);
logexp := car tassigns;
tassigns := cdr tassigns
>>;
stmtlst := foreach st in stmtlst
conc seg list st;
res := 'while . logexp . stmtlst;
if tassigns then
<<
res := append(res, reverse tassigns);
res := 'progn . append(reverse tassigns, list res)
>>;
return res
end$
procedure segrepeat stmt;
% repeat --> repeat %
begin
scalar stmtlst, logexp, type;
stmt := reverse cdr stmt;
logexp := car stmt;
stmtlst := reverse cdr stmt;
stmtlst := foreach st in stmtlst conc seg list st;
if toolongexpp logexp then
<<
type:=get(gentranlang!*,'boolean!-type)
or get('fortran,'boolean!-type);
% if gentranlang!* eq 'c
% then type := 'int
% else type := 'logical;
logexp := segexp1(logexp, type);
stmtlst := append(stmtlst, reverse cdr logexp);
logexp := car logexp
>>;
return 'repeat . append(stmtlst, list logexp)
end$
procedure segfor stmt;
% for --+--> for %
% +--> stmtgp %
begin
scalar var, loexp, stepexp, hiexp, stmtlst, tassigns1, tassigns2, type,
markedvars, res;
var := cadr stmt;
type := getvartype var;
stmt := cddr stmt;
loexp := caar stmt;
stepexp := cadar stmt;
hiexp := caddar stmt;
stmtlst := cddr stmt;
if toolongexpp loexp then
<<
loexp := segexp1(loexp, type);
tassigns1 := reverse cdr loexp;
loexp := car loexp;
markvar loexp;
markedvars := loexp . markedvars
>>;
if toolongexpp stepexp then
<<
stepexp := segexp1(stepexp, type);
tassigns2 := reverse cdr stepexp;
stepexp := car stepexp;
markvar stepexp;
markedvars := stepexp . markedvars
>>;
if toolongexpp hiexp then
<<
hiexp := segexp1(hiexp, type);
tassigns1 := append(tassigns1, reverse cdr hiexp);
tassigns2 := append(tassigns2, reverse cdr hiexp);
hiexp := car hiexp
>>;
unmarkvar markedvars;
stmtlst := foreach st in stmtlst conc seg list st;
stmtlst := append(stmtlst, tassigns2);
res := !*for!* . var . list(loexp, stepexp, hiexp) . !*do!* . stmtlst;
if tassigns1 then
return mkstmtgp(nil, append(tassigns1, list res))
else
return res
end$
procedure segreturn ret;
% return --> stmtgp %
<<
ret := segexp1(cadr ret, 'unknown);
rplaca(ret, mkreturn car ret);
mkstmtgp(nil, reverse ret)
>>$
procedure seggroup stmtgp;
% stmtgp --> stmtgp %
begin
scalar locvars, res;
if car stmtgp eq 'prog then
<<
locvars := cadr stmtgp;
stmtgp := cdr stmtgp
>>
else
locvars := 0;
while stmtgp := cdr stmtgp do
res := append(seg list car stmtgp, res);
return mkstmtgp(locvars, reverse res)
end$
procedure segdef deff;
% def --> def %
mkdef(cadr deff, caddr deff,
for each stmt in cdddr deff conc seg list stmt)$
%% %%
%% Long Statement & Expression Predicates %%
%% %%
procedure toolongexpp exp;
numprintlen exp > maxexpprintlen!*$
procedure toolongstmtp stmt;
if atom stmt then nil else
if lispstmtp stmt then
if lispcondp stmt then
toolongcondp stmt
else if lispassignp stmt then
toolongassignp stmt
else if lispreturnp stmt then
toolongreturnp stmt
else if lispwhilep stmt then
toolongwhilep stmt
else if lisprepeatp stmt then
toolongrepeatp stmt
else if lispforp stmt then
toolongforp stmt
else lispeval('or . for each exp in stmt collect toolongexpp exp)
else
toolongstmtgpp stmt$
procedure toolongassignp assign;
toolongexpp caddr assign$
procedure toolongcondp condd;
begin
scalar toolong;
while condd := cdr condd do
if toolongexpp caar condd or toolongstmtp cadar condd then
toolong := t;
return toolong
end$
procedure toolongwhilep stmt;
toolongexpp cadr stmt or
lispeval('or . foreach st in cddr stmt collect toolongstmtp st)$
procedure toolongrepeatp stmt;
<<
stmt := reverse cdr stmt;
toolongexpp car stmt or
lispeval('or . foreach st in cdr stmt collect toolongstmtp st)
>>$
procedure toolongforp stmt;
lispeval('or . foreach exp in caddr stmt collect
toolongexpp exp ) or
lispeval('or . foreach st in cddddr stmt collect
toolongstmtp st )$
procedure toolongreturnp ret;
cdr ret and toolongexpp cadr ret$
procedure toolongstmtgpp stmtgp;
lispeval('or . for each stmt in cdr stmtgp collect
toolongstmtp stmt )$
procedure toolongdefp deff;
if lispstmtgpp cadddr deff then
toolongstmtgpp cadddr deff
else
lispeval('or .
for each stmt in cdddr deff collect toolongstmtp stmt)$
%% %%
%% Print Length Function %%
%% %%
symbolic procedure numprintlen exp;
if atom exp then
length explode exp
else if onep length exp then
numprintlen car exp
else if car exp = '!:rd!: then
% 2+length explode cadr exp + length explode cddr exp
%else if car exp memq '( !:cr!: !:crn!: !:gi!: ) then
% 8+length explode cadr exp + length explode cddr exp
<<
exp := rd!:explode exp;
2+length car exp + length explode cadr exp
>>
else if car exp memq '( !:cr!: !:crn!: !:gi!: ) then
<<
exp := cons (rd!:explode('!:rd!: . cadr exp),
rd!:explode('!:rd!: . cddr exp));
12 + length caar exp + length explode cdar exp
+ length cadr exp + length explode cddr exp
>>
else
length exp + lispeval('plus . for each elt in cdr exp collect
numprintlen elt )$
%% %%
%% Temporary Variable Generation, Marking & Unmarking Functions %%
%% %%
procedure tempvar type;
% %
% IF type Member '(NIL 0) THEN type <- TEMPVARTYPE!* %
% %
% IF type Neq 'NIL And type Neq 'UNKNOWN THEN %
% var <- 1st unmarked tvar of VType type or of VType NIL %
% which isn't in the symbol table %
% put type on var's VType property list %
% put declaration in symbol table %
% ELSE IF type = NIL THEN %
% var <- 1st unmarked tvar of type NIL which isn't in the %
% symbol table %
% ELSE type = 'UNKNOWN %
% var <- 1st unmarked tvar of type NIL which isn't in the %
% symbol table %
% put 'UNKNOWN on var's VType property list %
% print warning - "undeclared" %
% %
% RETURN var %
% %
begin
scalar tvar, xname, num;
if type memq '(nil 0) then type := tempvartype!*;
xname := explode tempvarname!*;
num := tempvarnum!*;
if type memq '(nil unknown) then
repeat
<<
tvar := intern compress append(xname, explode num);
num := add1 num
>>
until not markedvarp tvar and not get(tvar, '!*vtype!*) and
not getvartype tvar
else
repeat
<<
tvar := intern compress append(xname, explode num);
num := add1 num
>>
until not markedvarp tvar and
(get(tvar, '!*vtype!*) eq type or
not get(tvar, '!*vtype!*) and not getvartype tvar);
put(tvar, '!*vtype!*, type);
if type eq 'unknown then
gentranerr('w, tvar, "UNDECLARED VARIABLE", nil)
else if type then
symtabput(nil, tvar, list type);
return tvar
end$
symbolic procedure isnumber u;
numberp(u) or (pairp(u) and memq(car u,domainlist!*) )$
symbolic procedure markvar var;
if isnumber var then
var
else if atom var then
<< flag(list var, '!*marked!*); var >>
else
<< for each v in var do markvar v; var >>$
symbolic procedure markedvarp var;
flagp(var, '!*marked!*)$
symbolic procedure unmarkvar var;
if isnumber var then
var
else if atom var then
remflag(list var, '!*marked!*)
else
foreach elt in var do
unmarkvar elt$
endmodule;
module lspfor; %% GENTRAN LISP-to-FORTRAN Translation Module %%
%% Author: Barbara L. Gates %%
%% December 1986 %%
% Updates:
% M. Warns 7 Oct 89 Patch in FORTEXP1 for negative constant exponents
% and integer arguments of functions like SQRT added.
% M.C. Dewar and J.H. Davenport 8 Jan 88 Double precision etc. added.
% Entry Point: FortCode
symbolic$
% To allow Fortran-90 Extensions:
fluid '(!*f90)$
switch f90$
fluid '(!*gendecs)$
switch gendecs$
fluid '(!*getdecs)$
fluid '(!*makecalls)$
switch makecalls$
!*makecalls := t$
% User-Accessible Global Variables %
global '(gentranlang!* fortlinelen!* minfortlinelen!*
fortcurrind!* !*fortcurrind!* tablen!*)$
share fortcurrind!*, fortlinelen!*, minfortlinelen!*, tablen!*$
fortcurrind!* := 0$
!*fortcurrind!* := 6$ %current level of indentation for FORTRAN code
fortlinelen!* := 72$
minfortlinelen!* := 40$
% Double Precision Switch (defaults to OFF) - mcd 13/1/88 %
fluid '(!*double);
% !*double := t;
switch double;
% GENTRAN Global Variables %
global '(!*notfortranfuns!* !*endofloopstack!* !*subprogname!*)$
!*notfortranfuns!*:= '(acosh asinh atanh cot dilog ei erf sec)$
%mcd 10/11/87
!*endofloopstack!* := nil$
!*subprogname!* := nil$ %name of subprogram being generated
global '(!*do!* deftype!*)$
% The following ought to be all the legal Fortran types mcd 19/11/87.
global '(!*legalforttypes!*);
!*legalforttypes!* := '(real integer complex real!*8 complex!*16 logical
implicit! integer implicit! real
implicit! complex implicit! real!*8
implicit! complex!*16 implicit! logical)$
global '(!*stdout!*)$
global '(!*posn!* !$!#);
%% %%
%% LISP-to-FORTRAN Translation Functions %%
%% %%
put('fortran,'formatter,'formatfort);
put('fortran,'codegen,'fortcode);
put('fortran,'proctem,'procforttem);
put('fortran,'gendecs,'fortdecs);
put('fortran,'assigner,'mkffortassign);
put('fortran,'boolean!-type,'logical);
%% Control Function %%
symbolic procedure fortcode forms;
for each f in forms conc
if atom f then
fortexp f
else if car f memq '(!:rd!: !:cr!: !:crn!: !:gi!:) then
fortexp f
else if lispstmtp f or lispstmtgpp f then
if !*gendecs then
begin
scalar r;
r := append(fortdecs symtabget('!*main!*, '!*decs!*),
fortstmt f);
symtabrem('!*main!*, '!*decs!*);
return r
end
else
fortstmt f
else if lispdefp f then
fortsubprog f
else
fortexp f$
%% Subprogram Translation %%
symbolic procedure fortsubprog deff;
begin
scalar type, stype, name, params, body, lastst, r;
name := !*subprogname!* := cadr deff;
if onep length (body := cdddr deff) and lispstmtgpp car body then
<< body := cdar body; if null car body then body := cdr body >>;
if lispreturnp (lastst := car reverse body) then
body := append(body, list '(end))
else if not lispendp lastst then
body := append(body, list('(return), '(end)));
type := symtabget(name, name);
if type then type := cadr type;
stype := symtabget(name, '!*type!*) or
( if type or functionformp(body, name)
then 'function
else 'subroutine );
symtabrem(name, '!*type!*);
params := symtabget(name, '!*params!*) or caddr deff;
symtabrem(name, '!*params!*);
if !*getdecs and null type and stype eq 'function
then type := deftype!*;
if type then
<< symtabrem(name, name);
% Generate the correct double precision type name - mcd 28/1/88 %
if !*double then
if type memq '(real real*8) then
type := 'double! precision
else if type eq 'complex then
type := 'complex!*16;
>>;
r := mkffortsubprogdec(type, stype, name, params);
if !*gendecs then
r := append(r, fortdecs symtabget(name, '!*decs!*));
r := append(r, for each s in body
conc fortstmt s);
if !*gendecs then
<< symtabrem(name, nil); symtabrem(name, '!*decs!*) >>;
return r
end$
%% Generation of Declarations %%
symbolic procedure fortdecs decs;
for each tl in formtypelists decs
conc mkffortdec(car tl, cdr tl)$
%% Expression Translation %%
procedure fortexp exp;
fortexp1(exp, 0)$
symbolic procedure fortexp1(exp, wtin);
if atom exp then
list fortranname exp
else
if listp exp and onep length exp then
fortranname exp
else if optype car exp then
begin
scalar wt, op, res;
wt := fortranprecedence car exp;
op := fortranop car exp;
exp := cdr exp;
if onep length exp then
res := op . fortexp1(car exp, wt)
else
<<
res := fortexp1(car exp, wt);
if op eq '!+ then
while exp := cdr exp do
<<
if atom car exp or caar exp neq 'minus then
res := append(res, list op);
res := append(res, fortexp1(car exp, wt))
>>
else if op eq '!*!* then
while exp := cdr exp do
begin
if numberp car exp and lessp(car exp, 0) then
res := append(append(res, list op),
insertparens fortexp1(car exp, wt))
else
res := append(append(res, list op),
fortexp1(car exp, wt))
end
else
while exp := cdr exp do
res := append(append(res, list op),
fortexp1(car exp, wt))
>>;
if wtin >= wt then res := insertparens res;
return res
end
else if car exp eq 'literal then
fortliteral exp
else if car exp eq 'range
then append(fortexp cadr exp,'!: . fortexp caddr exp)
else if car exp eq '!:rd!: then
if smallfloatp cdr exp then
list cdr exp
else
begin scalar mt; % Print bigfloats more naturally. MCD 26/2/90
integer dotpos,!:lower!-sci!:,!:upper!-sci!:;
% This forces most numbers to exponential format.
mt := rd!:explode exp;
exp := car mt;
mt := cadr mt + caddr mt - 1;
exp := append(list('literal,car exp, '!.),cdr exp);
if null (mt = 0) then
exp := append(exp,
list(if !*double then '!D else '!E,mt))
else if !*double then
exp := append(exp,'(!D 0));
return fortliteral exp;
end
else if car exp eq '!:crn!: then
fortexp1(!*crn2cr exp,wtin)
else if car exp eq '!:gi!: then
fortexp1(!*gi2cr exp,wtin)
else if car exp eq '!:cr!: then
if !*double and !*f90 then
('cmplx!().append(fortexp1(cons('!:rd!:,cadr exp),wtin),
('!,).append(fortexp1(cons('!:rd!:,cddr exp),wtin),
list( '!, , 'kind!(!1!.!0!D!0!) , '!) ))
)
else
('cmplx!().append(fortexp1(cons('!:rd!:,cadr exp),wtin),
('!,).append(fortexp1(cons('!:rd!:,cddr exp),wtin),
list '!)))
% We must make this list up at run time, since there's
% a CONC loop that relies on being able to RPLAC into it.
% Yuck. JHD/MCD 19.6.89
else
begin scalar op, res, intrinsic;
intrinsic := get(car exp, '!*fortranname!*);
op := fortranname car exp;
exp := cdr exp;
% Make the arguments of intrinsic functions real if we aren't
% sure. Note that we can't simply evaluate the argument and
% test that, unless it is a constant. MCD 7/11/89.
res := cdr foreach u in exp conc
'!, . if not intrinsic then
fortexp1(u,0)
else if fixp u then
list float u
else if isfloat u or memq(op,'(real dble)) then
fortexp1(u,0)
else
(fortranname 'real . insertparens fortexp1(u,0));
return op . insertparens res
end;
symbolic procedure isfloat u;
% Returns T if u is a float or a list whose car is an intrinsic
% function name. MCD 7/11/89.
floatp(u) or (idp u and declared!-as!-float(u) ) or
pairp(u) and (car u eq '!:rd!: or
get(car u,'!*fortranname!*) or
declared!-as!-float(car u) );
procedure fortranop op;
get(op, '!*fortranop!*) or op$
put('or, '!*fortranop!*, '!.or!. )$
put('and, '!*fortranop!*, '!.and!.)$
put('not, '!*fortranop!*, '!.not!.)$
put('equal, '!*fortranop!*, '!.eq!. )$
put('neq, '!*fortranop!*, '!.ne!. )$
put('greaterp, '!*fortranop!*, '!.gt!. )$
put('geq, '!*fortranop!*, '!.ge!. )$
put('lessp, '!*fortranop!*, '!.lt!. )$
put('leq, '!*fortranop!*, '!.le!. )$
put('plus, '!*fortranop!*, '!+ )$
put('times, '!*fortranop!*, '!* )$
put('quotient, '!*fortranop!*, '/ )$
put('minus, '!*fortranop!*, '!- )$
put('expt, '!*fortranop!*, '!*!* )$
% This procedure (and FORTRANNAME, RATFORNAME properties, and
% the DOUBLE flag) are shared between FORTRAN and RATFOR
procedure fortranname a; % Amended mcd 10/11/87
if stringp a then
stringtoatom a % convert a to atom containing "'s
else
<< if a memq !*notfortranfuns!* then
<< wrs cdr !*stdout!*;
prin2 "*** WARNING: ";
prin1 a;
prin2t " is not an intrinsic Fortran function";
>>$
if !*double then
get(a, '!*doublename!*) or a
else
get(a, '!*fortranname!*) or a
>>$
put('true, '!*fortranname!*, '!.true!. )$
put('false, '!*fortranname!*, '!.false!.)$
%% mcd 10/11/87
%% Reduce functions' equivalent Fortran 77 real function names
put('abs,'!*fortranname!*, 'abs)$
put('sqrt,'!*fortranname!*, 'sqrt)$
put('exp,'!*fortranname!*, 'exp)$
put('log,'!*fortranname!*, 'alog)$
put('ln,'!*fortranname!*, 'alog)$
put('sin,'!*fortranname!*, 'sin)$
put('cos,'!*fortranname!*, 'cos)$
put('tan,'!*fortranname!*, 'tan)$
put('acos,'!*fortranname!*, 'acos)$
put('asin,'!*fortranname!*, 'asin)$
put('atan,'!*fortranname!*, 'atan)$
put('sinh,'!*fortranname!*, 'sinh)$
put('cosh,'!*fortranname!*, 'cosh)$
put('tanh,'!*fortranname!*, 'tanh)$
put('real,'!*fortranname!*, 'real)$
put('max,'!*fortranname!*, 'amax1)$
put('min,'!*fortranname!*, 'amin1)$
%% Reduce function's equivalent Fortran 77 double-precision names
put('abs,'!*doublename!*, 'dabs)$
put('sqrt,'!*doublename!*, 'dsqrt)$
put('exp,'!*doublename!*, 'dexp)$
put('log,'!*doublename!*, 'dlog)$
put('ln,'!*doublename!*, 'dlog)$
put('sin,'!*doublename!*, 'dsin)$
put('cos,'!*doublename!*, 'dcos)$
put('tan,'!*doublename!*, 'dtan)$
put('acos,'!*doublename!*, 'dacos)$
put('asin,'!*doublename!*, 'dasin)$
put('atan,'!*doublename!*, 'datan)$
put('sinh,'!*doublename!*, 'dsinh)$
put('cosh,'!*doublename!*, 'dcosh)$
put('tanh,'!*doublename!*, 'dtanh)$
put('true, '!*doublename!*, '!.true!. )$
put('false, '!*doublename!*, '!.false!.)$
put('real,'!*doublename!*, 'dble)$
put('max,' !*doublename!*, 'dmax1)$
put('min, '!*doublename!*, 'dmin1)$
%% end of mcd
procedure fortranprecedence op;
get(op, '!*fortranprecedence!*) or 9$
put('or, '!*fortranprecedence!*, 1)$
put('and, '!*fortranprecedence!*, 2)$
put('not, '!*fortranprecedence!*, 3)$
put('equal, '!*fortranprecedence!*, 4)$
put('neq, '!*fortranprecedence!*, 4)$
put('greaterp, '!*fortranprecedence!*, 4)$
put('geq, '!*fortranprecedence!*, 4)$
put('lessp, '!*fortranprecedence!*, 4)$
put('leq, '!*fortranprecedence!*, 4)$
put('plus, '!*fortranprecedence!*, 5)$
put('times, '!*fortranprecedence!*, 6)$
put('quotient, '!*fortranprecedence!*, 6)$
put('minus, '!*fortranprecedence!*, 7)$
put('expt, '!*fortranprecedence!*, 8)$
%% Statement Translation %%
procedure fortstmt stmt;
if null stmt then
nil
else if lisplabelp stmt then
fortstmtnum stmt
else if car stmt eq 'literal then
fortliteral stmt
else if lispreadp stmt then
fortread stmt
else if lispassignp stmt then
fortassign stmt
else if lispprintp stmt then
fortwrite stmt
else if lispcondp stmt then
fortif stmt
else if lispbreakp stmt then
fortbreak stmt
else if lispgop stmt then
fortgoto stmt
else if lispreturnp stmt then
fortreturn stmt
else if lispstopp stmt then
fortstop stmt
else if lispendp stmt then
fortend stmt
else if lispwhilep stmt then
fortwhile stmt
else if lisprepeatp stmt then
fortrepeat stmt
else if lispforp stmt then
fortfor stmt
else if lispstmtgpp stmt then
fortstmtgp stmt
else if lispdefp stmt then
fortsubprog stmt
else if lispcallp stmt then
fortcall stmt$
procedure fortassign stmt;
mkffortassign(cadr stmt, caddr stmt)$
procedure fortbreak stmt;
if null !*endofloopstack!* then
gentranerr('e, nil, "BREAK NOT INSIDE LOOP - CANNOT BE TRANSLATED",
nil)
else if atom car !*endofloopstack!* then
begin
scalar n1;
n1 := genstmtnum();
rplaca(!*endofloopstack!*, list(car !*endofloopstack!*, n1));
return mkffortgo n1
end
else
mkffortgo cadar !*endofloopstack!*$
procedure fortcall stmt;
mkffortcall(car stmt, cdr stmt)$
procedure fortfor stmt;
begin
scalar n1, result, var, loexp, stepexp, hiexp, stmtlst;
var := cadr stmt;
stmt := cddr stmt;
loexp := caar stmt;
stepexp := cadar stmt;
hiexp := caddar stmt;
stmtlst := cddr stmt;
n1 := genstmtnum();
!*endofloopstack!* := n1 . !*endofloopstack!*;
result := mkffortdo(n1, var, loexp, hiexp, stepexp);
indentfortlevel(+1);
result := append(result, for each st in stmtlst conc fortstmt st);
indentfortlevel(-1);
result := append(result, mkffortcontinue n1);
if pairp car !*endofloopstack!* then
result := append(result, mkffortcontinue cadar !*endofloopstack!*);
!*endofloopstack!* := cdr !*endofloopstack!*;
return result
end$
procedure fortend stmt;
mkffortend()$
procedure fortgoto stmt;
begin
scalar stmtnum;
if not ( stmtnum := get(cadr stmt, '!*stmtnum!*) ) then
stmtnum := put(cadr stmt, '!*stmtnum!*, genstmtnum());
return mkffortgo stmtnum
end$
symbolic procedure fortif stmt;
begin scalar r, st;
r := mkffortif caadr stmt;
indentfortlevel(+1);
st := seqtogp cdadr stmt;
if eqcar(st, 'cond) and length st=2 then
st := mkstmtgp(0, list st);
r := append(r, fortstmt st);
indentfortlevel(-1);
stmt := cdr stmt;
while (stmt := cdr stmt) and caar stmt neq t do
<<
r := append(r, mkffortelseif caar stmt);
indentfortlevel(+1);
st := seqtogp cdar stmt;
if eqcar(st, 'cond) and length st=2 then
st := mkstmtgp(0, list st);
r := append(r, fortstmt st);
indentfortlevel(-1)
>>;
if stmt then
<<
r := append(r, mkffortelse());
indentfortlevel(+1);
st := seqtogp cdar stmt;
if eqcar(st, 'cond) and length st=2 then
st := mkstmtgp(0, list st);
r := append(r, fortstmt st);
indentfortlevel(-1)
>>;
return append(r,mkffortendif());
end$
symbolic procedure mkffortif exp;
append(append(list(mkforttab(), 'if, '! , '!(), fortexp exp),
list('!),'! , 'then , mkfortterpri()))$
symbolic procedure mkffortelseif exp;
append(append(list(mkforttab(), 'else, '! , 'if, '! , '!(),
fortexp exp),
list('!), 'then, mkcterpri()))$
symbolic procedure mkffortelse();
list(mkforttab(), 'else, mkfortterpri())$
symbolic procedure mkffortendif();
list(mkforttab(), 'endif, mkfortterpri())$
procedure fortliteral stmt;
mkffortliteral cdr stmt$
procedure fortread stmt;
mkffortread cadr stmt$
procedure fortrepeat stmt;
begin
scalar n, result, stmtlst, logexp;
stmtlst := reverse cdr stmt;
logexp := car stmtlst;
stmtlst := reverse cdr stmtlst;
n := genstmtnum();
!*endofloopstack!* := 'dummy . !*endofloopstack!*;
result := mkffortcontinue n;
indentfortlevel(+1);
result := append(result, for each st in stmtlst conc fortstmt st);
indentfortlevel(-1);
result := append(result, mkffortifgo(list('not, logexp), n));
if pairp car !*endofloopstack!* then
result := append(result, mkffortcontinue cadar !*endofloopstack!*);
!*endofloopstack!* := cdr !*endofloopstack!*;
return result
end$
procedure fortreturn stmt;
if onep length stmt then
mkffortreturn()
else if !*subprogname!* then
append(mkffortassign(!*subprogname!*, cadr stmt), mkffortreturn())
else
gentranerr('e, nil,
"RETURN NOT INSIDE FUNCTION - CANNOT BE TRANSLATED",
nil)$
procedure fortstmtgp stmtgp;
<<
if car stmtgp eq 'progn then
stmtgp := cdr stmtgp
else
stmtgp := cddr stmtgp;
for each stmt in stmtgp conc fortstmt stmt
>>$
procedure fortstmtnum label;
begin
scalar stmtnum;
if not ( stmtnum := get(label, '!*stmtnum!*) ) then
stmtnum := put(label, '!*stmtnum!*, genstmtnum());
return mkffortcontinue stmtnum
end$
procedure fortstop stmt;
mkffortstop()$
procedure fortwhile stmt;
begin
scalar n1, n2, result, logexp, stmtlst;
logexp := cadr stmt;
stmtlst := cddr stmt;
n1 := genstmtnum();
n2 := genstmtnum();
!*endofloopstack!* := n2 . !*endofloopstack!*;
result := append(list(n1, '! ), mkffortifgo(list('not, logexp), n2));
indentfortlevel(+1);
result := append(result, for each st in stmtlst conc fortstmt st);
result := append(result, mkffortgo n1);
indentfortlevel(-1);
result := append(result, mkffortcontinue n2);
if pairp car !*endofloopstack!* then
result := append(result, mkffortcontinue cadar !*endofloopstack!*);
!*endofloopstack!* := cdr !*endofloopstack!*;
return result
end$
procedure fortwrite stmt;
mkffortwrite cdr stmt$
%% %%
%% FORTRAN Code Formatting Functions %%
%% %%
%% Statement Formatting %%
% A macro used to prevent things with *fortranname* or *doublename*
% properties being evaluated in certain circumstances. MCD 28.3.94
symbolic smacro procedure fortexp_name(u);
if atom u then list(u)
else rplaca(fortexp ('dummyarraytoken . cdr u), car u)$
symbolic procedure mkffortassign(lhs, rhs);
append(append(mkforttab() . fortexp_name lhs, '!= . fortexp rhs),
list mkfortterpri())$
symbolic procedure mkffortcall(fname, params);
% Installed the switch makecalls 18/11/88 mcd.
<<
if params then
params := append(append(list '!(,
for each p in insertcommas params
conc fortexp p),
list '!));
% If we want to generate bits of statements, then what might
% appear a subroutine call may in fact be a function reference.
if !*makecalls then
append(append(list(mkforttab(), 'call, '! ), fortexp fname),
append(params, list mkfortterpri()))
else
append(fortexp fname,params)
>>$
procedure mkffortcontinue stmtnum;
list(stmtnum, '! , mkforttab(), 'continue, mkfortterpri())$
symbolic procedure mkffortdec(type, varlist); %Ammended mcd 13/11/87
<<
if type equal 'scalar then type := deftype!*;
if type and null (type memq !*legalforttypes!*) then
gentranerr('e,type,"Illegal Fortran type. ",nil);
type := type or 'dimension;
% Generate the correct double precision type name - mcd 14/1/88 %
if !*double then
if type memq '(real real*8) then
type := 'double! precision
else if type memq '(implicit! real implicit! real*8) then
type := 'implicit! double! precision
else if type eq 'complex then
type := 'complex!*16
else if type eq 'implicit! complex then
type := 'implicit! complex!*16;
varlist := for each v in insertcommas varlist
conc fortexp_name v;
if implicitp type then
append(list(mkforttab(), type, '! , '!(),
append(varlist, list('!), mkfortterpri())))
else
append(list(mkforttab(), type, '! ),
append(varlist,list mkfortterpri()))
>>$
procedure mkffortdo(stmtnum, var, lo, hi, incr);
<<
if onep incr then
incr := nil
else if incr then
incr := '!, . fortexp incr;
append(append(append(list(mkforttab(), !*do!*, '! , stmtnum, '! ),
fortexp var),
append('!= . fortexp lo, '!, . fortexp hi)),
append(incr, list mkfortterpri()))
>>$
procedure mkffortend;
list(mkforttab(), 'end, mkfortterpri())$
procedure mkffortgo stmtnum;
list(mkforttab(), 'goto, '! , stmtnum, mkfortterpri())$
procedure mkffortifgo(exp, stmtnum);
append(append(list(mkforttab(), 'if, '! , '!(), fortexp exp),
list('!), '! , 'goto, '! , stmtnum, mkfortterpri()))$
symbolic procedure mkffortliteral args;
begin scalar !*lower;
return for each a in args conc
if a eq 'tab!* then list mkforttab()
else if a eq 'cr!* then list mkfortterpri()
else if pairp a then fortexp a
else list stripquotes a
end$
procedure mkffortread var;
append(list(mkforttab(), 'read, '!(!*!,!*!), '! ),
append(fortexp var, list mkfortterpri()))$
procedure mkffortreturn;
list(mkforttab(), 'return, mkfortterpri())$
procedure mkffortstop;
list(mkforttab(), 'stop, mkfortterpri())$
procedure mkffortsubprogdec(type, stype, name, params);
<<
if params then
params := append('!( . for each p in insertcommas params
conc fortexp p,
list '!));
if type then
type := list(mkforttab(), type, '! , stype, '! )
else
type := list(mkforttab(), stype, '! );
append(append(type, fortexp name),
append(params, list mkfortterpri()))
>>$
procedure mkffortwrite arglist;
append(append(list(mkforttab(), 'write, '!(!*!,!*!), '! ),
for each arg in insertcommas arglist conc fortexp arg),
list mkfortterpri())$
%% Indentation Control %%
procedure mkforttab;
list('forttab, fortcurrind!* + 6)$
procedure indentfortlevel n;
fortcurrind!* := fortcurrind!* + n * tablen!*$
procedure mkfortterpri;
list 'fortterpri$
%% FORTRAN Code Formatting & Printing Functions %%
fluid '(maxint);
maxint := 2**31-1;
symbolic procedure formatfort lst;
begin scalar linelen,str,!*lower;
linelen := linelength 300;
!*posn!* := 0;
for each elt in lst do
if pairp elt then lispeval elt
else
<<
if fixp elt and (elt>maxint or elt<-maxint) then
elt := cdr i2rd!* elt;
str:=explode2 elt;
if floatp elt then
if !*double then
if memq('!e,str)
then str:=subst('!D,'!e,str)
else if memq('!E,str) % some LISPs use E not e
then str:=subst('!D,'!E,str)
else str:=append(str,'(d !0))
else if memq('!e,str) then
str:=subst('!E,'!e,str);
% get the casing conventions correct
if !*posn!* + length str > fortlinelen!* then
fortcontline();
for each u in str do pprin2 u
>>;
linelength linelen
end$
procedure fortcontline;
<<
fortterpri();
pprin2 " .";
forttab !*fortcurrind!*;
pprin2 " "
>>$
procedure fortterpri;
pterpri()$
procedure forttab n;
<<
!*fortcurrind!* := max(min0(n, fortlinelen!* - minfortlinelen!*),6);
if (n := !*fortcurrind!* - !*posn!*) > 0 then pprin2 nspaces n
>>$
%% FORTRAN Template routines%%
symbolic procedure procforttem;
begin scalar c, linelen, !*lower;
linelen := linelength 150;
c := procfortcomm();
while c neq !$eof!$ do
if c memq '(!F !f !S !s)
then <<pprin2 c; c := procsubprogheading c>>
else if c eq !$eol!$
then <<pterpri(); c := procfortcomm()>>
else if c eq '!; then c := procactive()
else <<pprin2 c; c := readch()>>;
linelength linelen
end$
procedure procfortcomm;
% <col 1>C ... <cr> %
% <col 1>c ... <cr> %
begin
scalar c;
while (c := readch()) memq '(!C !c) do
<<
pprin2 c;
repeat
if (c := readch()) neq !$eol!$ then
pprin2 c
until c eq !$eol!$;
pterpri()
>>;
return c
end$
%% This function is shared between FORTRAN and RATFOR %%
procedure procsubprogheading c;
% Altered to allow an active statement to be included in a subprogram
% heading. This is more flexible than forbidding it as in the previous
% version, although it does mean that where such a statement occurs the
% value of !$!# may be incorrect. MCD 21/11/90
begin
scalar lst, name, i, propname;
lst := if c memq '(!F !f)
then '((!U !u) (!N !n) (!C !c) (!T !t) (!I !i) (!O !o)
(!N !n))
else '((!U !u) (!B !b) (!R !r) (!O !o) (!U !u)
(!T !t) (!I !i) (!N !n) (!E !e));
while lst and (c := readch()) memq car lst do
<< pprin2 c; lst := cdr lst >>;
if lst then return c;
c:=flushspaces readch();
while not(seprp c or c eq '!() do
<< name := aconc(name, c); pprin2 c; c := readch() >>;
name := intern compress name;
if not !*gendecs then
symtabput(name, nil, nil);
propname := if gentranlang!* eq 'fortran
then '!*fortranname!*
else '!*ratforname!*;
put('!$0, propname, name);
c:=flushspaces c;
if c neq '!( then return c;
i := 1;
pprin2 c;
c := readch();
while c neq '!) and c neq '!; do
<<
while c neq '!; and (seprp c or c eq '!,) do
<<
if c eq !$eol!$
then pterpri()
else pprin2 c;
c := readch()
>>;
if c neq '!; then
<<
name := list c;
pprin2 c;
while not (seprp (c := readch())
or c memq list('!,,'!;, '!))) do
<< name := aconc(name, c); pprin2 c >>;
put(intern compress append(explode2 '!$, explode2 i),
propname,
intern compress name);
i := add1 i;
c:=flushspaces c;
>>;
>>;
!$!# := sub1 i;
while get(name := intern compress append(explode2 '!$, explode2 i),
propname) do
remprop(name, propname);
return c
end$
endmodule;
module lsprat; %% GENTRAN LISP-to-RATFOR Translation Module %%
%% Author: Barbara L. Gates %%
%% December 1986 %%
% Updates:
% M.C. Dewar and J.H. Davenport 8 Jan 88 Double precision check added.
% Entry Point: RatCode
symbolic$
fluid '(!*double !*gendecs !*getdecs);
switch gendecs$
fluid '(!*makecalls)$
switch makecalls$
!*makecalls := t$
% User-Accessible Global Variables %
global '(minratlinelen!* ratlinelen!* !*ratcurrind!*
ratcurrind!* tablen!*)$
share ratcurrind!*, minratlinelen!*, ratlinelen!*, tablen!*$
ratcurrind!* := 0$
minratlinelen!* := 40$
ratlinelen!* := 80$
!*ratcurrind!* := 0$ %current level of indentation for RATFOR code
global '(deftype!* !*do!* !*notfortranfuns!* !*legalforttypes!*)$
global '(!*stdout!*)$
global '(!*posn!* !$!#)$
%% %%
%% LISP-to-RATFOR Translation Functions %%
%% %%
put('ratfor,'formatter,'formatrat);
put('ratfor,'codegen,'ratcode);
put('ratfor,'proctem,'procrattem);
put('ratfor,'gendecs,'ratdecs);
put('ratfor,'assigner,'mkfratassign);
put('ratfor,'boolean!-type,'logical);
%% Control Function %%
procedure ratcode forms;
for each f in forms conc
if atom f then
ratexp f
else if car f memq '(!:rd!: !:cr!: !:crn!: !:gi!:) then
ratexp f
else if lispstmtp f or lispstmtgpp f then
if !*gendecs then
begin
scalar r;
r := append(ratdecs symtabget('!*main!*, '!*decs!*),
ratstmt f);
symtabrem('!*main!*, '!*decs!*);
return r
end
else
ratstmt f
else if lispdefp f then
ratsubprog f
else
ratexp f$
%% Subprogram Translation %%
symbolic procedure ratsubprog deff;
begin
scalar type, stype, name, params, body, lastst, r;
name := cadr deff;
if onep length(body := cdddr deff) and lispstmtgpp car body then
<< body := cdar body; if null car body then body := cdr body >>;
if lispreturnp (lastst := car reverse body) then
body := append(body, list '(end))
else if not lispendp lastst then
body := append(body, list('(return), '(end)));
type := cadr symtabget(name, name);
stype := symtabget(name, '!*type!*) or
( if type or functionformp(body, name)
then 'function
else 'subroutine );
symtabrem(name, '!*type!*);
params := symtabget(name, '!*params!*) or caddr deff;
symtabrem(name, '!*params!*);
if !*getdecs and null type and stype eq 'function
then type := deftype!*;
if type then
<< symtabrem(name, name);
% Generate the correct double precision type name - mcd 28/1/88 %
if !*double then
if type memq '(real real*8) then
type := 'double! precision
else if type eq 'complex then
type := 'complex!*16;
>>;
r := mkfratsubprogdec(type, stype, name, params);
if !*gendecs then
r := append(r, ratdecs symtabget(name, '!*decs!*));
r := append(r, for each s in body
conc ratstmt s);
if !*gendecs then
<< symtabrem(name, nil); symtabrem(name, '!*decs!*) >>;
return r
end$
%% Generation of Declarations %%
procedure ratdecs decs;
for each tl in formtypelists decs
conc mkfratdec(car tl, cdr tl)$
%% Expression Translation %%
procedure ratexp exp;
ratexp1(exp, 0)$
procedure ratexp1(exp, wtin);
if atom exp then
list fortranname exp
else
if onep length exp then
fortranname exp
else if optype car exp then
begin
scalar wt, op, res;
wt := ratforprecedence car exp;
op := ratforop car exp;
exp := cdr exp;
if onep length exp then
res := op . ratexp1(car exp, wt)
else
<<
res := ratexp1(car exp, wt);
if op eq '!+ then
while exp := cdr exp do
<<
if atom car exp or caar exp neq 'minus then
res := append(res, list op);
res := append(res, ratexp1(car exp, wt))
>>
else
while exp := cdr exp do
res := append(append(res, list op),
ratexp1(car exp, wt))
>>;
if wtin >= wt then res := insertparens res;
return res
end
else if car exp eq 'literal then
ratliteral exp
else if car exp eq 'range
then append(fortexp cadr exp,'!: . fortexp caddr exp)
else if car exp eq '!:rd!: then
begin scalar mt;
integer dotpos,!:lower!-sci!:,!:upper!-sci!:; % this forces most
% numbers to exponential format
mt := rd!:explode exp;
exp := car mt;
mt := cadr mt + caddr mt - 1;
exp := append(list('literal,car exp, '!.),cdr exp);
if null (mt = 0) then
exp := append(exp, list(if !*double then '!d else '!e,mt))
else if !*double then
exp := append(exp,'(!e 0));
return ratliteral exp;
end
else if car exp memq '(!:cr!: !:crn!: !:gi!:) then
begin scalar re,im;
re := explode if smallfloatp cadr exp then cadr exp
else caadr exp;
re := if memq ('!e, re) then
subst('d,'!e,re)
else if memq ('!e, re) then
subst('d,'!e,re)
else if !*double then
append(re,'(d 0))
else
append(re,'(e 0));
im := explode if smallfloatp cddr exp then cddr exp
else caddr exp;
im := if memq ('!e, im) then
subst('d,'!e,im)
else if memq ('!e, im) then
subst('d,'!e,im)
else if !*double then
append(im,'(d 0))
else
append(im,'(e 0));
return ('!().append(re,('!,).append(im,'(!))));
end
else
begin
scalar op, res;
op := fortranname car exp;
exp := cdr exp;
res := ratexp1(car exp, 0);
while exp := cdr exp do
res := append(append(res, list '!,), ratexp1(car exp, 0));
return op . insertparens res
end$
procedure ratforop op;
get(op, '!*ratforop!*) or op$
put('or, '!*ratforop!*, '| )$
put('and, '!*ratforop!*, '& )$
put('not, '!*ratforop!*, '!! )$
put('equal, '!*ratforop!*, '!=!=)$
put('neq, '!*ratforop!*, '!!!=)$
put('greaterp, '!*ratforop!*, '> )$
put('geq, '!*ratforop!*, '!>!=)$
put('lessp, '!*ratforop!*, '< )$
put('leq, '!*ratforop!*, '!<!=)$
put('plus, '!*ratforop!*, '!+ )$
put('times, '!*ratforop!*, '* )$
put('quotient, '!*ratforop!*, '/ )$
put('minus, '!*ratforop!*, '!- )$
put('expt, '!*ratforop!*, '!*!*)$
procedure ratforprecedence op;
get(op, '!*ratforprecedence!*) or 9$
put('or, '!*ratforprecedence!*, 1)$
put('and, '!*ratforprecedence!*, 2)$
put('not, '!*ratforprecedence!*, 3)$
put('equal, '!*ratforprecedence!*, 4)$
put('neq, '!*ratforprecedence!*, 4)$
put('greaterp, '!*ratforprecedence!*, 4)$
put('geq, '!*ratforprecedence!*, 4)$
put('lessp, '!*ratforprecedence!*, 4)$
put('leq, '!*ratforprecedence!*, 4)$
put('plus, '!*ratforprecedence!*, 5)$
put('times, '!*ratforprecedence!*, 6)$
put('quotient, '!*ratforprecedence!*, 6)$
put('minus, '!*ratforprecedence!*, 7)$
put('expt, '!*ratforprecedence!*, 8)$
%% Statement Translation %%
procedure ratstmt stmt;
if null stmt then
nil
else if lisplabelp stmt then
ratstmtnum stmt
else if car stmt eq 'literal then
ratliteral stmt
else if lispreadp stmt then
ratread stmt
else if lispassignp stmt then
ratassign stmt
else if lispprintp stmt then
ratwrite stmt
else if lispcondp stmt then
ratif stmt
else if lispbreakp stmt then
ratbreak stmt
else if lispgop stmt then
ratgoto stmt
else if lispreturnp stmt then
ratreturn stmt
else if lispstopp stmt then
ratstop stmt
else if lispendp stmt then
ratend stmt
else if lisprepeatp stmt then
ratrepeat stmt
else if lispwhilep stmt then
ratwhile stmt
else if lispforp stmt then
ratforfor stmt
else if lispstmtgpp stmt then
ratstmtgp stmt
else if lispdefp stmt then
ratsubprog stmt
else if lispcallp stmt then
ratcall stmt$
procedure ratassign stmt;
mkfratassign(cadr stmt, caddr stmt)$
procedure ratbreak stmt;
mkfratbreak()$
procedure ratcall stmt;
mkfratcall(car stmt, cdr stmt)$
procedure ratforfor stmt;
begin
scalar r, var, loexp, stepexp, hiexp, stmtlst;
var := cadr stmt;
stmt := cddr stmt;
loexp := caar stmt;
stepexp := cadar stmt;
hiexp := caddar stmt;
stmtlst := cddr stmt;
r := mkfratdo(var, loexp, hiexp, stepexp);
indentratlevel(+1);
r := append(r, foreach st in stmtlst conc ratstmt st);
indentratlevel(-1);
return r
end$
procedure ratend stmt;
mkfratend()$
procedure ratgoto stmt;
begin
scalar stmtnum;
stmtnum := get(cadr stmt, '!*stmtnum!*) or
put(cadr stmt, '!*stmtnum!*, genstmtnum());
return mkfratgo stmtnum
end$
procedure ratif stmt;
begin
scalar r, st;
r := mkfratif caadr stmt;
indentratlevel(+1);
st := seqtogp cdadr stmt;
if eqcar(st, 'cond) and length st=2 then
st := mkstmtgp(0, list st);
r := append(r, ratstmt st);
indentratlevel(-1);
stmt := cdr stmt;
while (stmt := cdr stmt) and caar stmt neq t do
<<
r := append(r, mkfratelseif caar stmt);
indentratlevel(+1);
st := seqtogp cdar stmt;
if eqcar(st, 'cond) and length st=2 then
st := mkstmtgp(0, list st);
r := append(r, ratstmt st);
indentratlevel(-1)
>>;
if stmt then
<<
r := append(r, mkfratelse());
indentratlevel(+1);
st := seqtogp cdar stmt;
if eqcar(st, 'cond) and length st=2 then
st := mkstmtgp(0, list st);
r := append(r, ratstmt st);
indentratlevel(-1)
>>;
return r
end$
procedure ratliteral stmt;
mkfratliteral cdr stmt$
procedure ratread stmt;
mkfratread cadr stmt$
procedure ratrepeat stmt;
begin
scalar r, stmtlst, logexp;
stmt := reverse cdr stmt;
logexp := car stmt;
stmtlst := reverse cdr stmt;
r := mkfratrepeat();
indentratlevel(+1);
r := append(r, foreach st in stmtlst conc ratstmt st);
indentratlevel(-1);
return append(r, mkfratuntil logexp)
end$
procedure ratreturn stmt;
if cdr stmt then
mkfratreturn cadr stmt
else
mkfratreturn nil$
procedure ratstmtgp stmtgp;
begin
scalar r;
if car stmtgp eq 'progn then
stmtgp := cdr stmtgp
else
stmtgp := cddr stmtgp;
r := mkfratbegingp();
indentratlevel(+1);
r := append(r, for each stmt in stmtgp conc ratstmt stmt);
indentratlevel(-1);
return append(r, mkfratendgp())
end$
procedure ratstmtnum label;
begin
scalar stmtnum;
stmtnum := get(label, '!*stmtnum!*) or
put(label, '!*stmtnum!*, genstmtnum());
return mkfratcontinue stmtnum
end$
procedure ratstop stmt;
mkfratstop()$
procedure ratwhile stmt;
begin
scalar r, logexp, stmtlst;
logexp := cadr stmt;
stmtlst := cddr stmt;
r := mkfratwhile logexp;
indentratlevel(+1);
r := append(r, foreach st in stmtlst conc ratstmt st);
indentratlevel(-1);
return r
end$
procedure ratwrite stmt;
mkfratwrite cdr stmt$
%% %%
%% RATFOR Code Formatting Functions %%
%% %%
%% Statement Formatting %%
% A macro used to prevent things with *fortranname* or *doublename*
% properties being evaluated in certain circumstances. MCD 28.3.94
symbolic smacro procedure ratexp_name(u);
if atom u then list(u)
else rplaca(ratexp ('dummyarraytoken . cdr u), car u)$
procedure mkfratassign(lhs, rhs);
append(append(mkrattab() . ratexp_name lhs, '!= . ratexp rhs),
list mkratterpri())$
procedure mkfratbegingp;
list(mkrattab(), '!{, mkratterpri())$
procedure mkfratbreak;
list(mkrattab(), 'break, mkratterpri())$
procedure mkfratcall(fname, params);
% Installed the switch makecalls 18/11/88 mcd.
<<
if params then
params := append(append(list '!(,
for each p in insertcommas params
conc ratexp p),
list '!));
% If we want to generate bits of statements, then what might
% appear a subroutine call may in fact be a function reference.
if !*makecalls then
append(append(list(mkrattab(), 'call, '! ), ratexp fname),
append(params, list mkratterpri()))
else
append(ratexp fname,params)
>>$
procedure mkfratcontinue stmtnum;
list(stmtnum, '! , mkrattab(), 'continue, mkratterpri())$
symbolic procedure mkfratdec(type, varlist); %Ammended mcd 3/12/87
<<
if type equal 'scalar then type := deftype!*;
if type and null (type memq !*legalforttypes!*) then
gentranerr('e,type,"Illegal Ratfor type. ",nil);
type := type or 'dimension;
% Generate the correct double precision type name - mcd 14/1/88 %
if !*double then
if type memq '(real real*8) then
type := 'double! precision
else if type memq '(implicit! real implicit! real*8) then
type := 'implicit! double! precision
else if type eq 'complex then
type := 'complex!*16
else if type eq 'implicit! complex then
type := 'implicit! complex!*16;
varlist := for each v in insertcommas varlist
conc ratexp_name v;
if implicitp type then
append(list(mkrattab(), type, '! , '!(),
append(varlist, list('!), mkratterpri())))
else
append(list(mkrattab(), type, '! ),
append(varlist, list mkratterpri()))
>>$
procedure mkfratdo(var, lo, hi, incr);
<<
if onep incr then
incr := nil
else if incr then
incr := '!, . ratexp incr;
append(append(append(list(mkrattab(), !*do!*, '! ), ratexp var),
append('!= . ratexp lo, '!, . ratexp hi)),
append(incr, list mkratterpri()))
>>$
procedure mkfratelse;
list(mkrattab(), 'else, mkratterpri())$
procedure mkfratelseif exp;
append(append(list(mkrattab(), 'else, '! , 'if, '! , '!(), ratexp exp),
list('!), mkratterpri()))$
procedure mkfratend;
list(mkrattab(), 'end, mkratterpri())$
procedure mkfratendgp;
list(mkrattab(), '!}, mkratterpri())$
procedure mkfratgo stmtnum;
list(mkrattab(), 'goto, '! , stmtnum, mkratterpri())$
procedure mkfratif exp;
append(append(list(mkrattab(), 'if, '! , '!(), ratexp exp),
list('!), mkratterpri()))$
procedure mkfratliteral args;
for each a in args conc
if a eq 'tab!* then
list mkrattab()
else if a eq 'cr!* then
list mkratterpri()
else if pairp a then
ratexp a
else
list stripquotes a$
procedure mkfratread var;
append(list(mkrattab(), 'read, '!(!*!,!*!), '! ),
append(ratexp var, list mkratterpri()))$
procedure mkfratrepeat;
list(mkrattab(), 'repeat, mkratterpri())$
procedure mkfratreturn exp;
if exp then
append(append(list(mkrattab(), 'return, '!(), ratexp exp),
list('!), mkratterpri()))
else
list(mkrattab(), 'return, mkratterpri())$
procedure mkfratstop;
list(mkrattab(), 'stop, mkratterpri())$
procedure mkfratsubprogdec(type, stype, name, params);
<<
if params then
params := append('!( . for each p in insertcommas params
conc ratexp p,
list '!));
if type then
type := list(mkrattab(), type, '! , stype, '! )
else
type := list(mkrattab(), stype, '! );
append(append(type, ratexp name),
append(params,list mkratterpri()))
>>$
procedure mkfratuntil logexp;
append(list(mkrattab(), 'until, '! , '!(),
append(ratexp logexp, list('!), mkratterpri())))$
procedure mkfratwhile exp;
append(append(list(mkrattab(), 'while, '! , '!(), ratexp exp),
list('!), mkratterpri()))$
procedure mkfratwrite arglist;
append(append(list(mkrattab(), 'write, '!(!*!,!*!), '! ),
for each arg in insertcommas arglist conc ratexp arg),
list mkratterpri())$
%% Indentation Control %%
procedure mkrattab;
list('rattab, ratcurrind!*)$
procedure indentratlevel n;
ratcurrind!* := ratcurrind!* + n * tablen!*$
procedure mkratterpri;
list 'ratterpri$
%% RATFOR Code Formatting & Printing Functions %%
procedure formatrat lst;
begin
scalar linelen,str;
linelen := linelength 300;
!*posn!* := 0;
for each elt in lst do
if pairp elt then lispeval elt
else
<< str:=explode2 elt;
if floatp elt then
if !*double then
if memq('!e,str)
then str:=subst('d,'!e,str)
else if memq('e,str) % Some LISPs use E not e
then str:=subst('d,'e,str)
else str:=append(str,'(d !0))
else str:=subst('e,'!e,str);
% get the casing conventions correct
if !*posn!* + length str > ratlinelen!* then
ratcontline();
for each u in str do pprin2 u
>>;
linelength linelen
end$
procedure ratcontline;
<<
ratterpri();
rattab !*ratcurrind!*;
pprin2 " "
>>$
procedure ratterpri;
pterpri()$
procedure rattab n;
<<
!*ratcurrind!* := min0(n, ratlinelen!* - minratlinelen!*);
if (n := !*ratcurrind!* - !*posn!*) > 0 then pprin2 nspaces n
>>$
%% RATFOR template processing %%
procedure procrattem;
begin
scalar c, linelen;
linelen := linelength 150;
c := readch();
while c neq !$eof!$ do
if c memq '(!F !f !S !s) then
<<
pprin2 c;
c := procsubprogheading c
>>
else if c eq '!# then
c := procratcomm()
else if c eq '!; then
c := procactive()
else if c eq !$eol!$ then
<<
pterpri();
c := readch()
>>
else
<<
pprin2 c;
c := readch()
>>;
linelength linelen
end$
procedure procratcomm;
% # ... <cr> %
begin
scalar c;
pprin2 '!#;
while (c := readch()) neq !$eol!$ do
pprin2 c;
pterpri();
return readch()
end$
endmodule;
module lspc; %% GENTRAN LISP-to-C Translation Module %%
%% Author: Barbara L. Gates %%
%% December 1986 %%
% Entry Point: CCode
symbolic$
fluid '(!*double !*gendecs)$
switch gendecs$
% User-Accessible Global Variables %
global '(clinelen!* minclinelen!* !*ccurrind!* ccurrind!* tablen!*)$
share clinelen!*, minclinelen!*, ccurrind!*, tablen!*$
ccurrind!* := 0$
clinelen!* := 80$
minclinelen!* := 40$
!*ccurrind!* := 0$ %current level of indentation for C code
global '(deftype!* !*c!-functions!*)$
global '(!*posn!* !$!#);
!*c!-functions!* := '(sin cos tan asin acos atan atan2 sinh cosh tanh
asinh acosh atanh sincos sinpi cospi tanpi asinpi
acospi atanpi exp expm1 exp2 exp10 log log1p log2
log10 pow compound annuity abs fabs fmod sqrt
cbrt)$
flag( '(abs),'!*int!-args!*)$ % Intrinsic function with integer arg.
%% %%
%% LISP-to-C Translation Functions %%
%% %%
put('c,'formatter,'formatc);
put('c,'codegen,'ccode);
put('c,'proctem,'procctem);
put('c,'gendecs,'cdecs);
put('c,'assigner,'mkfcassign);
put('c,'boolean!-type,'!i!n!t);
%% Control Function %%
symbolic procedure ccode forms;
for each f in forms conc
if atom f then
cexp f
else if car f memq '(!:rd!: !:cr!: !:crn!: !:gi!:) then
cexp f
else if lispstmtp f or lispstmtgpp f then
if !*gendecs then
begin
scalar r;
r := append(cdecs symtabget('!*main!*, '!*decs!*),
cstmt f);
symtabrem('!*main!*, '!*decs!*);
return r
end
else
cstmt f
else if lispdefp f then
cproc f
else
cexp f$
%% Procedure Translation %%
symbolic procedure cproc deff; % Type details amended mcd 3/3/88
begin
scalar type, name, params, paramtypes, vartypes, body, r;
name := cadr deff;
if onep length (body := cdddr deff) and lispstmtgpp car body then
<< body := cdar body; if null car body then body := cdr body >>;
if (type := symtabget(name, name)) then
<< type := cadr type;
% Convert reduce types to c types
if type equal 'real then
type := '!f!l!o!a!t
else if type equal 'integer then
type := '!i!n!t;
if !*double then
if type equal '!f!l!o!a!t then
type := '!d!o!u!b!l!e
else if type equal '!i!n!t then
type := '!l!o!n!g;
symtabrem(name, name)
>>;
params := symtabget(name, '!*params!*) or caddr deff;
symtabrem(name, '!*params!*);
for each dec in symtabget(name, '!*decs!*) do
if car dec memq params
then paramtypes := append(paramtypes, list dec)
else vartypes := append(vartypes, list dec);
r := append( append( mkfcprocdec(type, name, params),
cdecs paramtypes ),
mkfcbegingp() );
indentclevel(+1);
if !*gendecs then
r := append(r, cdecs vartypes);
r := append(r, for each s in body
conc cstmt s);
indentclevel(-1);
r := append(r, mkfcendgp());
if !*gendecs then
<< symtabrem(name, nil); symtabrem(name, '!*decs!*) >>;
return r
end$
%% Generation of Declarations %%
symbolic procedure cdecs decs;
for each tl in formtypelists decs
conc mkfcdec(car tl, cdr tl)$
%% Expression Translation %%
symbolic procedure cexp exp;
cexp1(exp, 0)$
symbolic procedure cexp1(exp, wtin);
if atom exp then
list cname exp
else
if onep length exp then
append(cname exp, insertparens(()))
else if car exp eq 'expt then
if caddr exp = 2 then
cexp1 (list('times, cadr exp, cadr exp), wtin)
else if caddr exp = 3 then
cexp1 (list('times, cadr exp, cadr exp, cadr exp), wtin)
else if caddr exp = 4 then
cexp1(list('times,cadr exp,cadr exp,cadr exp,cadr exp),wtin)
else if caddr exp = '(quotient 1 2) then
cexp1 (list('sqrt, cadr exp), wtin)
else
cexp1 ('pow . cdr exp,wtin)
else if optype car exp then
begin
scalar wt, op, res;
wt := cprecedence car exp;
op := cop car exp;
exp := cdr exp;
if onep length exp then
res := op . cexp1(car exp, wt)
else
<<
res := cexp1(car exp, wt);
if op eq '!+ then
while exp := cdr exp do
<<
if atom car exp or caar exp neq 'minus then
res := append(res, list op);
res := append(res, cexp1(car exp, wt))
>>
else
while exp := cdr exp do
res := append(append(res, list op),
cexp1(car exp, wt))
>>;
if wtin >= wt then res := insertparens res;
return res
end
else if car exp eq 'literal then
cliteral exp
else if car exp eq 'range then
if cadr exp = 0 then cexp caddr exp
else gentranerr('e,exp,
"C does not support non-zero lower bounds",nil)
else if car exp eq '!:rd!: then
if smallfloatp cdr exp then
list cdr exp
else
begin scalar mt; % Print bigfloats more naturally.
integer dotpos,!:lower!-sci!:,!:upper!-sci!:;
% This forces most numbers to exponential format.
mt := rd!:explode exp;
exp := car mt;
mt := cadr mt + caddr mt - 1;
exp := append(list('literal,car exp, '!.),cdr exp);
if null (mt = 0) then
exp := append(exp,
list('!e,mt));
return cliteral exp;
end
else if car exp memq '(!:cr!: !:crn!: !:gi!:) then
gentranerr('e,exp,"C doesn't support complex data type",nil)
else if arrayeltp exp then
cname car exp . foreach s in cdr exp conc
insertbrackets cexp1(s, 0)
else if memq(car exp,!*c!-functions!*) then
begin scalar op,res,dblp;
dblp := not get(car exp,'!*int!-args!*);
op := cname car exp;
res := '!( . list op ;
while exp := cdr exp do
<<
op := cexp1(car exp, 0);
if dblp and not
(is!-c!-float(op) or is!-c!-float(car exp)) then
op := if fixp car op then
(float car op) . (cdr op)
else
append(list('!(,'!d!o!u!b!l!e,'!),'!(),
append(op,list '!)));
res := if cdr exp then
append('!, . reversip op,res)
else
append(reversip op,res);
>>;
return reversip ( '!) . res )
end
else if cfunctcallp exp then
begin
scalar op, res;
op := cname car exp;
exp := cdr exp;
res := '!( . cexp1(car exp, 0);
while exp := cdr exp do
res := append(res, '!, . cexp1(car exp, 0));
return op . append(res, list('!)) )
end
else
begin
scalar op, res;
op := cname car exp;
exp := cdr exp;
res := append( '![ . cexp1(car exp, 0),list('!]) );
% Changed to generate proper C arrays - mcd 25/9/89
while exp := cdr exp do
res := append(res, append('![ . cexp1(car exp, 0)
,list('!]) ) );
return op . res
end$
symbolic procedure string2id str;
intern compress reversip cdr reversip cdr explode str$
symbolic procedure is!-c!-float u;
% Returns T if u is a float or a list whose car is an intrinsic
% function name with a floating point result.
floatp(u) or (idp u and declared!-as!-float(u) ) or
pairp(u) and (car u eq '!:rd!: or
stringp car u and memq(string2id car u,!*c!-functions!*) and
not flagp(string2id car u, '!*int!-args!*) or
declared!-as!-float(car u) )$
symbolic procedure cfunctcallp exp;
symtabget(car exp,'!*type!*)$
symbolic procedure cop op;
get(op, '!*cop!*) or op$
put('or, '!*cop!*, '!|!|)$
put('and, '!*cop!*, '!&!&)$
put('not, '!*cop!*, '!! )$
put('equal, '!*cop!*, '!=!=)$
put('neq, '!*cop!*, '!!!=)$
put('greaterp, '!*cop!*, '> )$
put('geq, '!*cop!*, '!>!=)$
put('lessp, '!*cop!*, '< )$
put('leq, '!*cop!*, '!<!=)$
put('plus, '!*cop!*, '!+ )$
put('times, '!*cop!*, '* )$
put('quotient, '!*cop!*, '/ )$
put('minus, '!*cop!*, '!- )$
symbolic procedure cname a;
if stringp a then
stringtoatom a % convert a to atom containing "'s
else if memq(a,!*c!-functions!*) then
string!-downcase a
else
get(a, '!*cname!*) or a$
symbolic procedure cprecedence op;
get(op, '!*cprecedence!*) or 8$
put('or, '!*cprecedence!*, 1)$
put('and, '!*cprecedence!*, 2)$
put('equal, '!*cprecedence!*, 3)$
put('neq, '!*cprecedence!*, 3)$
put('greaterp, '!*cprecedence!*, 4)$
put('geq, '!*cprecedence!*, 4)$
put('lessp, '!*cprecedence!*, 4)$
put('leq, '!*cprecedence!*, 4)$
put('plus, '!*cprecedence!*, 5)$
put('times, '!*cprecedence!*, 6)$
put('quotient, '!*cprecedence!*, 6)$
put('not, '!*cprecedence!*, 7)$
put('minus, '!*cprecedence!*, 7)$
%% Statement Translation %%
symbolic procedure cstmt stmt;
if null stmt then
nil
else if lisplabelp stmt then
clabel stmt
else if car stmt eq 'literal then
cliteral stmt
else if lispassignp stmt then
cassign stmt
else if lispcondp stmt then
cif stmt
else if lispbreakp stmt then
cbreak stmt
else if lispgop stmt then
cgoto stmt
else if lispreturnp stmt then
creturn stmt
else if lispstopp stmt then
cexit stmt
else if lisprepeatp stmt then
crepeat stmt
else if lispwhilep stmt then
cwhile stmt
else if lispforp stmt then
cfor stmt
else if lispstmtgpp stmt then
cstmtgp stmt
else if lispdefp stmt then
cproc stmt
else
cexpstmt stmt$
symbolic procedure cassign stmt;
mkfcassign(cadr stmt, caddr stmt)$
symbolic procedure cbreak stmt;
mkfcbreak()$
symbolic procedure cexit stmt;
mkfcexit()$
symbolic procedure cexpstmt exp;
append(mkctab() . cexp exp, list('!;, mkcterpri()))$
symbolic procedure cfor stmt;
begin
scalar r, var, loexp, stepexp, hiexp, stmtlst;
var := cadr stmt;
stmt := cddr stmt;
loexp := caar stmt;
stepexp := cadar stmt;
hiexp := caddar stmt;
stmtlst := cddr stmt;
r := mkfcfor(var, loexp,
list(if (numberp stepexp and stepexp < 0) or
eqcar(stepexp,'minus) then 'geq else 'leq,
var, hiexp),
var,
list('plus, var, stepexp));
indentclevel(+1);
r := append(r, foreach st in stmtlst conc cstmt st);
indentclevel(-1);
return r
end$
symbolic procedure cgoto stmt;
mkfcgo cadr stmt$
symbolic procedure cif stmt;
begin
scalar r, st;
r := mkfcif caadr stmt;
indentclevel(+1);
st := seqtogp cdadr stmt;
if eqcar(st, 'cond) and length st=2 then
st := mkstmtgp(0, list st);
r := append(r, cstmt st);
indentclevel(-1);
stmt := cdr stmt;
while (stmt := cdr stmt) and caar stmt neq t do
<<
r := append(r, mkfcelseif caar stmt);
indentclevel(+1);
st := seqtogp cdar stmt;
if eqcar(st, 'cond) and length st=2 then
st := mkstmtgp(0, list st);
r := append(r, cstmt st);
indentclevel(-1)
>>;
if stmt then
<<
r := append(r, mkfcelse());
indentclevel(+1);
st := seqtogp cdar stmt;
if eqcar(st, 'cond) and length st=2 then
st := mkstmtgp(0, list st);
r := append(r, cstmt st);
indentclevel(-1)
>>;
return r
end$
symbolic procedure clabel label;
mkfclabel label$
symbolic procedure cliteral stmt;
mkfcliteral cdr stmt$
symbolic procedure crepeat stmt;
begin
scalar r, stmtlst, logexp;
stmt := reverse cdr stmt;
logexp := car stmt;
stmtlst := reverse cdr stmt;
r := mkfcdo();
indentclevel(+1);
r := append(r, foreach st in stmtlst conc cstmt st);
indentclevel(-1);
return append(r, mkfcdowhile list('not, logexp))
end$
symbolic procedure creturn stmt;
if cdr stmt then
mkfcreturn cadr stmt
else
mkfcreturn nil$
symbolic procedure cstmtgp stmtgp;
begin
scalar r;
if car stmtgp eq 'progn then
stmtgp := cdr stmtgp
else
stmtgp :=cddr stmtgp;
r := mkfcbegingp();
indentclevel(+1);
r := append(r, for each stmt in stmtgp conc cstmt stmt);
indentclevel(-1);
return append(r, mkfcendgp())
end$
symbolic procedure cwhile stmt;
begin
scalar r, logexp, stmtlst;
logexp := cadr stmt;
stmtlst := cddr stmt;
r := mkfcwhile logexp;
indentclevel(+1);
r := append(r, foreach st in stmtlst conc cstmt st);
indentclevel(-1);
return r
end$
%% %%
%% C Code Formatting Functions %%
%% %%
%% Statement Formatting %%
% A macro used to prevent things with *cname*
% properties being evaluated in certain circumstances. MCD 28.3.94
symbolic smacro procedure cexp_name(u);
if atom u then list(u)
else rplaca(cexp ('dummyarraytoken . cdr u), car u)$
symbolic procedure mkfcassign(lhs, rhs);
begin
scalar st;
if length rhs = 3 and lhs member rhs then
begin
scalar op, exp1, exp2;
op := car rhs;
exp1 := cadr rhs;
exp2 := caddr rhs;
if op = 'plus then
if onep exp1 or onep exp2 then
st := ('!+!+ . cexp_name lhs)
else if exp1 member '(-1 (minus 1))
or exp2 member '(-1 (minus 1)) then
st := ('!-!- . cexp_name lhs)
else if eqcar(exp1, 'minus) then
st := append(cexp_name lhs, '!-!= . cexp cadr exp1)
else if eqcar(exp2, 'minus) then
st := append(cexp_name lhs, '!-!= . cexp cadr exp2)
else if exp1 = lhs then
st := append(cexp_name lhs, '!+!= . cexp exp2)
else
st := append(cexp_name lhs, '!+!= . cexp exp1)
else if op = 'difference and onep exp2 then
st := ('!-!- . cexp_name lhs)
else if op = 'difference and exp1 = lhs then
st := append(cexp_name lhs, '!-!= . cexp exp2)
else if op = 'times and exp1 = lhs then
st := append(cexp_name lhs, '!*!= . cexp exp2)
else if op = 'times then
st := append(cexp_name lhs, '!*!= . cexp exp1)
else if op = 'quotient and exp1 = lhs then
st := append(cexp_name lhs, '!/!= . cexp exp2)
else
st := append(cexp_name lhs, '!= . cexp rhs)
end
else
st := append(cexp_name lhs, '!= . cexp rhs);
return append(mkctab() . st, list('!;, mkcterpri()))
end$
symbolic procedure mkfcbegingp;
list(mkctab(), '!{, mkcterpri())$
symbolic procedure mkfcbreak;
list(mkctab(), '!b!r!e!a!k, '!;, mkcterpri())$
symbolic procedure mkfcdec(type, varlist); %Amended mcd 13/11/87,3/3/88
<<
if type equal 'scalar then
type := deftype!*;
% Convert Reduce types to C types.
if type equal 'real then
type := '!f!l!o!a!t
else if type equal 'integer then
type := '!i!n!t;
% Deal with precision.
if !*double then
if type equal '!f!l!o!a!t then
type := '!d!o!u!b!l!e
else if type equal '!i!n!t then
type := '!l!o!n!g;
varlist := for each v in varlist collect
if atom v then
v
else
car v . for each dim in cdr v collect
if dim eq 'times then '! %
else if numberp dim then add1 dim
else if eqcar (dim, 'range) and cadr dim = 0
then add1 caddr dim
else gentranerr('e,dim,"Not C dimension",nil);
append(mkctab() . type . '! . for each v in insertcommas varlist
conc cexp_name v,
list('!;, mkcterpri()))
>>$
symbolic procedure mkfcdo;
list(mkctab(), '!d!o, mkcterpri())$
symbolic procedure mkfcdowhile exp;
append(append(list(mkctab(), '!w!h!i!l!e, '! , '!(), cexp exp),
list('!), '!;, mkcterpri()))$
symbolic procedure mkfcelse;
list(mkctab(), '!e!l!s!e, mkcterpri())$
symbolic procedure mkfcelseif exp;
append(append(list(mkctab(), '!e!l!s!e, '! , '!i!f, '! , '!(),
cexp exp),
list('!), mkcterpri()))$
symbolic procedure mkfcendgp;
list(mkctab(), '!}, mkcterpri())$
symbolic procedure mkfcexit;
list(mkctab(), '!e!x!i!t, '!(, 0, '!), '!;, mkcterpri())$
symbolic procedure mkfcfor(var1, lo, cond, var2, nextexp);
<<
if var1 then
var1 := append(cexp var1, '!= . cexp lo);
if cond then
cond := cexp cond;
if var2 then
<<
var2 := cdr mkfcassign(var2, nextexp);
var2 := reverse cddr reverse var2
>>;
append(append(append(list(mkctab(), '!f!o!r! , '! , '!(), var1),
'!; . cond),
append('!; . var2, list('!), mkcterpri())))
>>$
symbolic procedure mkfcgo label;
list(mkctab(), '!g!o!t!o, '! , label, '!;, mkcterpri())$
symbolic procedure mkfcif exp;
append(append(list(mkctab(), '!i!f, '! , '!(), cexp exp),
list('!), mkcterpri()))$
symbolic procedure mkfclabel label;
list(label, '!:, mkcterpri())$
symbolic procedure mkfcliteral args;
for each a in args conc
if a eq 'tab!* then
list mkctab()
else if a eq 'cr!* then
list mkcterpri()
else if pairp a then
cexp a
else
list stripquotes a$
symbolic procedure mkfcprocdec(type, name, params);
<<
params := append('!( . for each p in insertcommas params
conc cexp p,
list '!));
if type then
append(mkctab() . type . '! . cexp name,
append(params,list mkcterpri()))
else
append(mkctab() . cexp name, append(params, list mkcterpri()))
>>$
symbolic procedure mkfcreturn exp;
if exp then
append(append(list(mkctab(), '!r!e!t!u!r!n, '!(), cexp exp),
list('!), '!;, mkcterpri()))
else
list(mkctab(), '!r!e!t!u!r!n, '!;, mkcterpri())$
symbolic procedure mkfcwhile exp;
append(append(list(mkctab(), '!w!h!i!l!e, '! , '!(), cexp exp),
list('!), mkcterpri()))$
%% Indentation Control %%
symbolic procedure mkctab;
list('ctab, ccurrind!*)$
symbolic procedure indentclevel n;
ccurrind!* := ccurrind!* + n * tablen!*$
symbolic procedure mkcterpri;
list 'cterpri$
%% %%
%% Misc. Functions %%
%% %%
symbolic procedure insertbrackets exp;
'![ . append(exp, list '!])$
%% C Code Formatting & Printing Functions %%
symbolic procedure formatc lst;
begin
scalar linelen;
linelen := linelength 300;
!*posn!* := 0;
for each elt in lst do
if pairp elt then lispeval elt
else
<<
if !*posn!* + length explode2 elt > clinelen!* then
ccontline();
pprin2 elt
>>;
linelength linelen
end$
symbolic procedure ccontline;
<<
cterpri();
ctab !*ccurrind!*;
pprin2 " "
>>$
symbolic procedure cterpri;
pterpri()$
symbolic procedure ctab n;
<<
!*ccurrind!* := min0(n, clinelen!* - minclinelen!*);
if (n := !*ccurrind!* - !*posn!*) > 0 then pprin2 nspaces n
>>$
%% C template processing %%
symbolic procedure procctem;
begin
scalar c, linelen;
linelen := linelength 150;
c := readch();
if c eq '!# then c := procc!#line c;
while c neq !$eof!$ do
if c eq !$eol!$ then
c := procc!#line c
else if c eq '!/ then
c := procccomm()
else if c eq '!; then
c := procactive()
else
c := proccheader(c);
linelength linelen
end$
symbolic procedure procc!#line c;
% # ... <cr> %
begin
if c eq !$eol!$ then
<< pterpri(); c := readch() >>;
if c eq '!# then
repeat
<< pprin2 c; c := readch() >>
until c eq !$eol!$;
return c
end$
symbolic procedure procccomm;
% /* ... */ %
begin
scalar c;
pprin2 '!/;
c := readch();
if c eq '!* then
<<
pprin2 c;
c := readch();
repeat
<<
while c neq '!* do
<<
if c eq !$eol!$
then pterpri()
else pprin2 c;
c := readch()
>>;
pprin2 c;
c := readch()
>>
until c eq '!/;
pprin2 c;
c := readch()
>>;
return c
end$
symbolic procedure proccheader c;
begin
scalar name, i;
while seprp c and c neq !$eol!$ do
<< pprin2 c; c := readch() >>;
while not(seprp c or c memq list('!/, '!;, '!()) do
<< name := aconc(name, c); pprin2 c; c := readch() >>;
if c memq list(!$eol!$, '!/, '!;) then return c;
while seprp c and c neq !$eol!$ do
<< pprin2 c; c := readch() >>;
if c neq '!( then return c;
name := intern compress name;
if not !*gendecs then
symtabput(name, nil, nil);
put('!$0, '!*cname!*, name);
pprin2 c;
i := 1;
c := readch();
while c neq '!) do
<<
while seprp c or c eq '!, do
<<
if c eq !$eol!$
then pterpri()
else pprin2 c;
c := readch()
>>;
name := list c;
pprin2 c;
while not(seprp (c := readch()) or c memq list('!,, '!))) do
<< name := aconc(name, c); pprin2 c >>;
put(intern compress append(explode2 '!$, explode2 i),
'!*cname!*,
intern compress name);
i := add1 i;
c:=flushspaces c
>>;
!$!# := sub1 i;
while get(name := intern compress append(explode2 '!$, explode2 i),
'!*cname!*) do
remprop(name, '!*cname!*);
return proccfunction c
end$
symbolic procedure proccfunction c;
begin
scalar !{!}count;
while c neq '!{ do
if c eq '!/ then
c := procccomm()
else if c eq '!; then
c := procactive()
else if c eq !$eol!$ then
<< pterpri(); c := readch() >>
else
<< pprin2 c; c := readch() >>;
pprin2 c;
!{!}count := 1;
c := readch();
while !{!}count > 0 do
if c eq '!{ then
<< !{!}count := add1 !{!}count; pprin2 c; c := readch() >>
else if c eq '!} then
<< !{!}count := sub1 !{!}count; pprin2 c; c := readch() >>
else if c eq '!/ then
c := procccomm()
else if c eq '!; then
c := procactive()
else if c eq !$eol!$ then
<< pterpri(); c := readch() >>
else
<< pprin2 c; c := readch() >>;
return c
end$
endmodule;
module lsppasc; %% GENTRAN LISP-to-PASCAL Translation Module %%
%% Author: John Fitch and James Davenport after Barbara L. Gates %%
%% November 1987 %%
% Entry Point: PASCCode
symbolic$
fluid '(!*gendecs)$
switch gendecs$
% User-Accessible Global Variables %
global '(pasclinelen!* minpasclinelen!* !*pasccurrind!* pasccurrind!*
tablen!* pascfuncname!*)$
share pasclinelen!*, minpasclinelen!*,
pasccurrind!*, tablen!*, pascfuncname!*$
pasccurrind!* := 0$
minpasclinelen!* := 40$
pasclinelen!* := 70$
!*pasccurrind!* := 0$ %current level of indentation for PASCAL code
global '(!*do!* !*for!*)$
global '(!*posn!* !$!#)$
%% %%
%% LISP-to-PASCAL Translation Functions %%
%% %%
put('pascal,'formatter,'formatpasc);
put('pascal,'codegen,'pasccode);
put('pascal,'proctem,'procpasctem);
put('pascal,'gendecs,'pascdecs);
put('pascal,'assigner,'mkfpascassign);
put('pascal,'boolean!-type,'boolean);
symbolic procedure pasc!-symtabput(name,type,value);
% Like symtabput, but indirects through TYPE declarations.
% has to be recursive
begin
scalar basetype, origtype, wastypedecl;
basetype:=car value;
if basetype = 'type then <<
wastypedecl:=t;
value:=cdr value;
basetype:=car value >>;
origtype:=symtabget(name,basetype) or symtabget('!*main!*,basetype);
if pairp origtype then origtype:=cdr origtype; % strip off name;
if pairp origtype and car origtype = 'type
then value:= (cadr origtype). append(cdr value,cddr origtype);
if wastypedecl
then symtabput(name,type,'type . value)
else symtabput(name,type,value);
end;
%% Control Function %%
procedure pasccode forms;
for each f in forms conc
if atom f then
pascexp f
else if car f memq '(!:rd!: !:cr!: !:crn!: !:gi!:) then
pascexp f
else if lispstmtp f or lispstmtgpp f then
if !*gendecs then
begin
scalar r;
r := append(pascdecs symtabget('!*main!*, '!*decs!*),
pascstmt f);
symtabrem('!*main!*, '!*decs!*);
return r
end
else
pascstmt f
else if lispdefp f then
pascproc f
else
pascexp f$
%% Procedure Translation %%
procedure pascproc deff;
begin
scalar type, name, params, paramtypes, vartypes, body, r;
name := cadr deff;
if onep length (body := cdddr deff) and lispstmtgpp car body then
<< body := cdar body;
if null car body then body := cdr body >>;
if (type := symtabget(name, name)) then
<< type := cadr type; symtabrem(name, name) >>;
params := symtabget(name, '!*params!*) or caddr deff;
symtabrem(name, '!*params!*);
for each dec in symtabget(name, '!*decs!*) do
if car dec memq params
then paramtypes := append(paramtypes, list dec)
else if cadr dec neq 'type then
vartypes := append(vartypes, list dec);
r := mkfpascprocdec(type, name, params, paramtypes);
if !*gendecs then
<< r:= append(r,list(mkpasctab(),'label,mkpascterpri()));
indentpasclevel(+1);
r:= append(r,list(mkpasctab(),'99999, '!;, mkpascterpri()));
indentpasclevel(-1);
r := append(r, pascdecs vartypes) >>;
r:= append(r, mkfpascbegingp() );
indentpasclevel(+1);
r := append(r, for each s in body
conc pascstmt s);
indentpasclevel(-1);
r:=append(r,list(mkpasctab(), 99999, '!:, mkpascterpri()));
r := append(r, mkfpascendgp());
if !*gendecs then
<< symtabrem(name, nil); symtabrem(name, '!*decs!*) >>;
return r
end$
%% Generation of Declarations %%
procedure pascdecs decs;
begin scalar r;
decs:=for each r in decs conc
if cadr r eq 'type then nil else list r;
if decs then <<
indentpasclevel(+1);
decs:=for each tl in formtypelists decs
conc mkfpascdec(car tl, cdr tl);
indentpasclevel(-1);
r:=append(list(mkpasctab(),'var, mkpascterpri()), decs) >>;
return r
end$
%% Expression Translation %%
procedure pascexp exp;
pascexp1(exp, 0)$
procedure pascexp1(exp, wtin);
if atom exp then
list pascname exp
else
if onep length exp then
pascname exp
else if optype car exp then
begin
scalar wt, op, res;
wt := pascprecedence car exp;
op := pascop car exp;
exp := cdr exp;
if onep length exp then
res := op . pascexp1(car exp, wt)
else
<<
res := pascexp1(car exp, wt);
if op eq '!+ then
while exp := cdr exp do
<<
if atom car exp or caar exp neq 'minus then
res := append(res, list op);
res := append(res, pascexp1(car exp, wt))
>>
else
while exp := cdr exp do
res := append(append(res, list op),
pascexp1(car exp, wt))
>>;
if wtin >= wt then res := insertparens res;
return res
end
else if car exp eq 'literal then
pascliteral exp
else if car exp eq 'range then
append(pascexp cadr exp, '!.!. . pascexp caddr exp)
else if car exp eq '!:rd!: then
begin scalar mt;
integer dotpos,!:lower!-sci!:,!:upper!-sci!:; % this forces most
% numbers to exponential format
mt := rd!:explode exp;
exp := car mt;
mt := cadr mt + caddr mt - 1;
exp := append(list('literal,car exp, '!.),cdr exp);
if null (mt = 0) then exp := append(exp, list('!e,mt));
return pascliteral exp;
end
else if car exp memq '(!:cr!: !:crn!: !:gi!:) then
gentranerr('e,exp,"Pascal doesn't support complex data",nil)
else if arrayeltp exp then
if cddr exp and ((caddr exp) equal '!.!.) then
pascname car exp . pascinsertbrackets cdr exp
else pascname car exp .
pascinsertbrackets cdr foreach s in cdr exp conc
'!, . pascexp1(s, 0)
else
begin
scalar op, res;
op := pascname car exp;
exp := cdr exp;
res := pascexp1(car exp, 0);
while exp := cdr exp do
res := append(append(res, list '!,), pascexp1(car exp, 0));
return op . insertparens res
end$
procedure pascop op;
get(op, '!*pascop!*) or op$
put('or, '!*pascop!*, 'or )$
put('and, '!*pascop!*, 'and )$
put('not, '!*pascop!*, 'not )$
put('equal, '!*pascop!*, '!= )$
put('neq, '!*pascop!*, '!<!>)$
put('greaterp, '!*pascop!*, '!> )$
put('geq, '!*pascop!*, '!>!=)$
put('lessp, '!*pascop!*, '!< )$
put('leq, '!*pascop!*, '!<!=)$
put('plus, '!*pascop!*, '!+ )$
put('times, '!*pascop!*, '!* )$
put('quotient, '!*pascop!*, '!/ )$
put('minus, '!*pascop!*, '!- )$
put('expt, '!*pascop!*, '!*!*)$
procedure pascname a;
if stringp a then
stringtopascatom a % convert a to atom containing ''s
else
get(a, '!*pascname!*) or a$
procedure stringtopascatom a;
intern compress
foreach c in append('!' . explode2 a, list '!')
conc list('!!, c)$
put('true, '!*pascname!*, 'true)$
put('false, '!*pascname!*, 'false)$
procedure pascprecedence op;
get(op, '!*pascprecedence!*) or 9$
put('or, '!*pascprecedence!*, 1)$
put('and, '!*pascprecedence!*, 2)$
put('equal, '!*pascprecedence!*, 3)$
put('neq, '!*pascprecedence!*, 3)$
put('greaterp, '!*pascprecedence!*, 4)$
put('geq, '!*pascprecedence!*, 4)$
put('lessp, '!*pascprecedence!*, 4)$
put('leq, '!*pascprecedence!*, 4)$
put('plus, '!*pascprecedence!*, 5)$
put('times, '!*pascprecedence!*, 6)$
put('quotient, '!*pascprecedence!*, 6)$
put('expt, '!*pascprecedence!*, 7)$
put('not, '!*pascprecedence!*, 8)$
put('minus, '!*pascprecedence!*, 8)$
%% Statement Translation %%
procedure pascstmt stmt;
if null stmt then
nil
else if lisplabelp stmt then
pasclabel stmt % Are there labels?
else if car stmt eq 'literal then
pascliteral stmt
else if lispassignp stmt then
pascassign stmt
else if lispcondp stmt then
pascif stmt
else if lispgop stmt then % Is there a go?
pascgoto stmt
else if lispreturnp stmt then
pascreturn stmt
else if lispstopp stmt then
pascstop stmt
else if lisprepeatp stmt then
pascrepeat stmt
else if lispwhilep stmt then
pascwhile stmt
else if lispforp stmt then
pascfor stmt
else if lispstmtgpp stmt then
pascstmtgp stmt
else if lispdefp stmt then
pascproc stmt
else
pascexpstmt stmt$
procedure pascassign stmt;
mkfpascassign(cadr stmt, caddr stmt)$
procedure pascstop stmt;
mkfpascstop()$
procedure pascexpstmt exp;
append(mkpasctab() . pascexp exp, list('!;, mkpascterpri()))$
procedure pascfor stmt;
begin
scalar r, variable, loexp, stepexp, hiexp, stmtlst;
variable := cadr stmt;
stmt := cddr stmt;
loexp := caar stmt;
stepexp := cadar stmt;
hiexp := caddar stmt;
stmtlst := cddr stmt;
r := mkfpascfor(variable, loexp, hiexp, stepexp);
indentpasclevel(+1);
%% ?? Should not the stmtlst have only one member??
r := append(r, foreach st in stmtlst conc pascstmt st);
indentpasclevel(-1);
return r
end$
procedure pascgoto stmt;
begin
scalar stmtnum;
if not ( stmtnum := get(cadr stmt, '!*stmtnum!*) ) then
stmtnum := put(cadr stmt, '!*stmtnum!*, genstmtnum());
return mkfpascgo stmtnum
end$
procedure pascif stmt;
begin
scalar r, st;
r := mkfpascif caadr stmt;
indentpasclevel(+1);
st := seqtogp cdadr stmt;
if eqcar(st, 'cond) and length st=2 then
st := mkstmtgp(0, list st);
r := append(r, pascstmt st);
indentpasclevel(-1);
stmt := cddr stmt;
if stmt then
<<
r := append(r, mkfpascelse());
indentpasclevel(+1);
st := seqtogp cdar stmt;
if eqcar(st, 'cond) and length st=2 then
st := mkstmtgp(0, list st);
r := append(r, pascstmt st);
indentpasclevel(-1)
>>;
return r
end$
procedure pasclabel label;
mkfpasclabel label$
procedure pascliteral stmt;
mkfpascliteral cdr stmt$
procedure pascrepeat stmt;
begin
scalar r, stmtlst, logexp;
stmt := reverse cdr stmt;
logexp := car stmt;
stmtlst := reverse cdr stmt;
r := mkfpascrepeat();
indentpasclevel(+1);
r := append(r, foreach st in stmtlst conc pascstmt st);
r:=removefinalsemicolon(r); % Remove final semicolon
indentpasclevel(-1);
return append(r, mkfpascuntil logexp)
end$
procedure pascreturn stmt;
if cdr stmt then
begin scalar r;
r := mkfpascbegingp();
indentpasclevel(+1);
r := append(r, mkfpascassign(pascfuncname!*, cadr stmt));
r := append(r, mkfpascreturn());
r := removefinalsemicolon(r); % Remove final semicolon
indentpasclevel(-1);
return append(r, mkfpascendgp())
end
else
mkfpascreturn()$
procedure pascstmtgp stmtgp;
begin
scalar r;
if car stmtgp eq 'progn then
stmtgp := cdr stmtgp
else
stmtgp :=cddr stmtgp;
r := mkfpascbegingp();
indentpasclevel(+1);
r := append(r, for each stmt in stmtgp conc pascstmt stmt);
r:=removefinalsemicolon(r); % Remove final semicolon
indentpasclevel(-1);
return append(r, mkfpascendgp())
end$
procedure pascwhile stmt;
begin
scalar r, logexp, stmtlst;
logexp := cadr stmt;
stmtlst := cddr stmt;
r := mkfpascwhile logexp;
indentpasclevel(+1);
r := append(r, foreach st in stmtlst conc pascstmt st);
indentpasclevel(-1);
return r
end$
procedure removefinalsemicolon r;
begin scalar rr;
r:=reversip r;
if car r eq '!; then return reversip cdr r;
if not ('!; memq r) then return reversip r;
rr:=r;
while not (cadr rr eq '!;) do << rr := cdr rr >>;
rplacd(rr, cddr rr);
return reversip r
end$
%% %%
%% Pascal Code Formatting Functions %%
%% %%
%% Statement Formatting %%
% A macro used to prevent things with *pascname*
% properties being evaluated in certain circumstances. MCD 28.3.94
symbolic smacro procedure pascexp_name(u);
if atom u then
list(u)
else
rplaca(pascexp ('dummyarraytoken . cdr u), car u)$
procedure mkfpascassign(lhs, rhs);
begin
scalar st;
st := append(pascexp_name lhs, '!:!= . pascexp rhs);
return append(mkpasctab() . st, list('!;, mkpascterpri()))
end$
procedure mkfpascbegingp;
list(mkpasctab(), 'begin, mkpascterpri())$
symbolic procedure mkfpascdec (type, varlist);
begin scalar simplet, arrayt;
varlist := for each v in varlist do
if atom v then simplet := v . simplet
else
arrayt :=
(car v . cdr for each dim in cdr v conc
if eqcar(dim,'range)
then list ('!, , cadr dim, '!.!., caddr dim )
else list ('!, , 0, '!.!., dim ))
. arrayt;
return append(if simplet
then append(mkpasctab() .
for each v in insertcommas simplet conc pascexp v,
(list('!:! , type, '!;, mkpascterpri()))),
for each v in arrayt conc
append(mkpasctab() . car pascexp car v. '!:! .
'array . insertbrackets cdr v,
list('! of! , type, '!;, mkpascterpri())))
end;
procedure mkfpascdo;
list(mkpasctab(), !*do!*, mkpascterpri())$
procedure mkfpascuntil exp;
append(append(list(mkpasctab(), 'until, '! ),
pascexp exp),
list('!;, mkpascterpri() ));
procedure mkfpascelse;
list(mkpasctab(), 'else, mkpascterpri())$
procedure mkfpascendgp;
list(mkpasctab(), 'end, '!;, mkpascterpri())$
procedure mkfpascstop;
list(mkpasctab(), 'svr, '!(, '!0, '!), '!;, mkpascterpri())$
procedure mkfpascfor(var1, lo, hi, stepexp);
<<
stepexp := if stepexp = 1 then list('! , 'to, '! ) else
if (stepexp = -1) or (stepexp = '(minus 1)) then
list('! , 'downto, '! ) else list('error);
hi:=append(pascexp hi,list('! , !*do!*, mkpascterpri()));
hi:=append(pascexp lo, nconc(stepexp, hi));
append(list(mkpasctab(), !*for!*, '! , var1, '!:!=), hi)
>>$
procedure mkfpascgo label;
list(mkpasctab(), 'goto, '! , label, '!;, mkpascterpri())$
procedure mkfpascif exp;
append(append(list(mkpasctab(), 'if, '! ), pascexp exp),
list('! , 'then, mkpascterpri()))$
procedure mkfpasclabel label;
list(label, '!:, mkpascterpri())$
procedure mkfpascliteral args;
for each a in args conc
if a eq 'tab!* then
list mkpasctab()
else if a eq 'cr!* then
list mkpascterpri()
else if pairp a then
pascexp a
else
list stripquotes a$
procedure mkfpascprocdec(type, name, params, paramtypes);
<< pascfuncname!* := name;
params := append('!( . cdr for each p in params
conc '!, . pascdum(p, paramtypes),
list '!));
if type then
append(mkpasctab() . 'function . '! . pascexp name,
append(params,list( '!:, type, '!;, mkpascterpri())))
else
append(mkpasctab() . 'procedure . '! . pascexp name,
append(params, list('!;, mkpascterpri())))
>>$
symbolic procedure pascdum (p,types);
begin scalar type;
type := pascgettype(p,types);
type := if atom type then list type
else if null cdr type then type
else append('array .
insertbrackets
cdr for each dim in cdr type conc
if eqcar(dim,'range)
then list('!,,cadr dim,'!.!.,caddr dim)
else list ('!, , 0, '!.!., dim ),
list ('! of! , car type));
return p . '!: . type
end;
symbolic procedure pascgettype(p,types);
if null types then 'default
else if p memq car types then cdr car types
else pascgettype(p,cdr types);
procedure mkfpascrepeat;
list(mkpasctab(), 'repeat, mkpascterpri())$
procedure mkfpascreturn;
list(mkpasctab(), 'goto, '! , 99999, '!;,
'!{return!}, mkpascterpri())$
procedure mkfpascwhile exp;
append(append(list(mkpasctab(), 'while, '! , '!(), pascexp exp),
list('!), mkpascterpri()))$
%% Indentation Control %%
procedure mkpasctab;
list('pasctab, pasccurrind!*)$
procedure indentpasclevel n;
pasccurrind!* := pasccurrind!* + n * tablen!*$
procedure mkpascterpri;
list 'pascterpri$
%% %%
%% Misc. Functions %%
%% %%
procedure pascinsertbrackets exp;
'![ . append(exp, list '!] )$
%% PASCAL Code Formatting & Printing Functions %%
procedure formatpasc lst;
begin
scalar linelen;
linelen := linelength 300;
!*posn!* := 0;
for each elt in lst do
if pairp elt then lispeval elt
else
<<
if !*posn!* + length explode2 elt > pasclinelen!* then
pasccontline();
pprin2 elt
>>;
linelength linelen
end$
procedure pasccontline;
<<
pascterpri();
pasctab !*pasccurrind!*;
pprin2 " "
>>$
procedure pascterpri;
pterpri()$
procedure pasctab n;
<<
!*pasccurrind!* := min0(n, pasclinelen!* - minpasclinelen!*);
if (n := !*pasccurrind!* - !*posn!*) > 0 then pprin2 nspaces n
>>$
%% PASCAL %%
%% John Fitch %%
global '(pascfuncname!*)$
share pascfuncname!*$
symbolic procedure procpasctem;
begin
scalar c;
c:=flushspaces readch();
while not (c eq !$eof!$ or c eq '!.)
do c:=flushspaces procpasctem1(c);
end;
symbolic procedure procpasctem1 c;
begin
scalar l,w, linelen;
linelen := linelength 150;
pprin2 c;
while c neq !$eof!$ and w neq 'end do <<
if c eq !$eol!$ then
<< pterpri(); c := readch() >>
else if c eq '!{ then << c := procpasccomm(); w:= nil >>
else if c eq '!; then
<< c := procactive(); pprin2 c; w:=nil >>;
if null w then <<
if liter c then l:= list c;
c := readch();
while liter c or digit c or c eq '!_ do
<< pprin2 c; l:=c . l; c := readch() >>;
w:=intern compress reverse l;
l:=nil >>;
if w eq 'var then c:=procpascvar c
else if w eq 'const then c:=procpascconst c
else if w eq 'type then c:=procpasctype c
else if w memq '(function procedure operator)
then c:=procfuncoperheading(w,c)
else if w eq 'begin then c:= nil . procpasctem1 c
else if w neq 'end then <<
while c neq '!; do <<
if c eq '!{ then c := procpasccomm()
else << pprin2 c; c := readch() >> >>;
pprin2 c;
c:=nil . readch() >>;
% recursive, since PASCAL is
if w eq 'end then <<
c:=flushspaces c;
if not ( c memq '(!; !.)) then
gentranerr('e,nil,"END not followed by ; or .",nil);
pprin2 c; c:=readch() >>
else <<
w:=car c;
c:=flushspaces cdr c; >>
>>;
linelength linelen;
return c;
end$
symbolic procedure procpasctype c;
% TYPE ...; ...; ... %
begin
scalar w,l;
next:
while not liter c do <<
if c eq !$eol!$ then pterpri() else pprin2 c;
c:=readch() >>;
l:=nil;
while liter c or digit c or c eq '!_ do
<< pprin2 c; l:=c . l; c := readch() >>;
w:=intern compress reverse l;
if w memq '(function procedure operator const var)
then return w . c;
c:=flushspaces c;
if c neq '!= then
gentranerr('e,nil,"Malformed TYPE declaration", nil);
l:=readpascaltype c;
c:=car l;
pasc!-symtabput(pascfuncname!*,w,'type . cdr l);
goto next;
end;
symbolic procedure procpascvar c;
% VAR ...; ...; ... %
begin
scalar name,l,namelist;
next:
while not liter c do <<
if c eq !$eol!$ then pterpri() else pprin2 c;
c:=readch() >>;
l:=nil;
while liter c or digit c or c eq '!_ do
<< pprin2 c; l:=c . l; c := readch() >>;
name:=intern compress reverse l;
if name memq '(function procedure operator const var begin)
then return name . c;
c:=flushspaces c;
namelist:=list name;
while (c = '!, ) do <<
pprin2 c;
c:=flushspaces readch();
l:=nil;
while liter c or digit c or c eq '!_ do
<< pprin2 c; l:=c . l; c := readch() >>;
name:=intern compress reverse l;
namelist:= name . namelist;
c:=flushspaces c >>;
if c neq '!: then gentranerr('e,nil,"Malformed VAR declaration", nil);
l:=readpascaltype c;
c:=car l;
for each name in namelist do
pasc!-symtabput(pascfuncname!*,name, cdr l);
goto next;
end;
symbolic procedure procpasccomm;
% { ... } %
begin
scalar c;
pprin2 '!{;
c := readch();
while c neq '!} do
<<
if c eq !$eol!$
then pterpri()
else pprin2 c;
c := readch()
>>;
pprin2 c;
c := readch();
return c
end$
symbolic procedure procfuncoperheading(keyword,c);
% returns the word after the procedure, and the character delimiting it
begin
scalar lst, name, i, ty, args, myargs;
c:=flushspaces c;
while not(seprp c or c eq '!( or c eq '!: ) do
<< name := aconc(name, c); pprin2 c; c := readch() >>;
name := intern compress name;
put('!$0, '!*pascalname!*, name);
symtabput(name,'!*type!*,keyword);
pascfuncname!*:=name;
c:=flushspaces c;
if c eq '!( then <<
i := 1;
pprin2 c;
c := readch();
while c neq '!) do
<< c:=flushspacescommas c;
name := list c;
pprin2 c;
while not (seprp (c := readch()) or
c memq list('!,, '!), '!:)) do
<< name := aconc(name, c); pprin2 c >>;
put(intern compress append(explode2 '!$, explode2 i),
'!*pascalname!*,
name:=intern compress name);
myargs := name . myargs;
i := add1 i;
if c eq '!: then <<
ty:=readpascaltype(c);
c:=car ty; ty:=cdr ty;
foreach n in myargs do
pasc!-symtabput(pascfuncname!*,n,ty);
args:=append(myargs,args);
myargs:=nil;
if (c eq '!;) then << pprin2 c; c:=readch() >>
>>;
c:=flushspaces c
>>;
!$!# := sub1 i;
>>
else !$!# :=0;
if c neq '!: then
<< pprin2 c;
while not (((c := readch()) eq '!:) or (c eq !$eol!$)) do
pprin2 c >>;
if c eq '!: then
<<
ty := readpascaltype c;
pasc!-symtabput(name,name,cdr ty);
c:=car ty
>>;
if numberp i then
while get(name := intern compress append(explode2 '!$, explode2 i),
'!*pascalname!*) do
<< remprop(name, '!*pascalname!*); i:=sub1 i >>;
lst:=nil;
c:=flushspaces c;
while liter c or digit c or c eq '!_ do
<< pprin2 c; lst:=c . lst; c := readch() >>;
if lst then
lst:=intern compress reverse lst;
return lst . c
end$
symbolic procedure readpascaltype(c);
begin
scalar ty;
pprin2 c;
c := flushspaces readch();
ty := list c;
pprin2 c;
while not (seprp (c := readch()) or c memq list('!;, '!), '![ )) do
<< ty := aconc(ty, c); pprin2 c >>;
ty := intern compress ty;
if ty eq 'array then return readpascalarraydeclaration(c)
else return c . list ty;
end;
symbolic procedure readpascalarraydeclaration (c);
begin
scalar lo,hi,ty;
ty:= nil;
c:=flushspaces c;
if not (c eq '![) then
gentranerr(c,nil,"invalid pascal array declaration",nil);
pprin2 c;
l: c:=flushspaces readch();
lo:= list c;
pprin2 c;
while not (seprp (c := readch()) or c eq '!.) do
<< lo:=aconc(lo,c); pprin2 c >>;
lo := compress lo;
c:=flushspaces c;
if not numberp lo then lo:=intern lo;
pprin2 c;
c:=readch();
if not (c eq '!.) then
gentranerr (c,nil,".. not found in array declaration",nil);
pprin2 c;
c:=flushspaces readch();
hi:= list c;
pprin2 c;
while not (seprp (c := readch()) or c memq list('!,, '!])) do
<< hi:=aconc(hi,c); pprin2 c >>;
hi := compress hi;
if not numberp hi then hi:=intern hi;
ty:= hi . ty;
pprin2 c;
c:=flushspaces c;
if c eq '!] then
<< ty:= reverse ty;
c:=flushspaces readch();
if not(c memq '( !o !O)) then gentranerr(c,nil,"not 'of'",nil);
pprin2 c;
c:=readch();
if not(c memq '( !f !F)) then gentranerr(c,nil,"not 'of'",nil);
pprin2 c;
c:=readpascaltype(readch());
return car c . append(cdr c,ty) >>;
goto l;
end;
procedure procpascheader c;
begin
scalar name, i;
while seprp c and c neq !$eol!$ do
<< pprin2 c; c := readch() >>;
while not(seprp c or c memq list('!{, '!;, '!()) do
<< name := aconc(name, c); pprin2 c; c := readch() >>;
if c memq list(!$eol!$, '!{, '!;) then return c;
while seprp c and c neq !$eol!$ do
<< pprin2 c; c := readch() >>;
if c neq '!( then return c;
name := intern compress name;
if not !*gendecs then
pasc!-symtabput(name, nil, nil);
put('!$0, '!*cname!*, name);
pprin2 c;
i := 1;
c := readch();
while c neq '!) do
<< c:=flushspacescommas c;
name := list c;
pprin2 c;
while not(seprp (c := readch()) or c memq list('!,, '!))) do
<< name := aconc(name, c); pprin2 c >>;
put(intern compress append(explode2 '!$, explode2 i),
'!*cname!*,
intern compress name);
i := add1 i;
c:=flushspaces c;
>>;
!$!# := sub1 i;
while get(name := intern compress append(explode2 '!$, explode2 i),
'!*cname!*) do
remprop(name, '!*cname!*);
return procpascfunction c
end$
procedure procpascfunction c;
begin
scalar block!-count;
while c neq '!{ do
if c eq '!; then
c := procactive()
else if c eq !$eol!$ then
<< pterpri(); c := readch() >>
else
<< pprin2 c; c := readch() >>;
pprin2 c;
block!-count := 1;
c := readch();
while block!-count > 0 do
if c eq 'begin then
<< block!-count := add1 block!-count;
pprin2 c; c := readch() >>
else if c eq 'end then
<< block!-count := sub1 block!-count; pprin2 c; c := readch() >>
else if c eq '!{ then
c := procpasccomm()
else if c eq '!; then
c := procactive()
else if c eq !$eol!$ then
<< pterpri(); c := readch() >>
else
<< pprin2 c; c := readch() >>;
return c
end$
% misc routines - JHD 15.12.87
endmodule;
module goutput; % GENTRAN Code Formatting & Printing and Error Handler
%% Author: Barbara L. Gates %%
%% December 1986 %%
% Entry Points: FormatC, FormatFort, FormatRat, GentranErr, FormatPasc
% All format routines moved to individual language modules
% JHD December 1987
symbolic$
fluid '(!*errcont)$
% GENTRAN Global Variables %
global '(!*errchan!* !*outchanl!* gentranlang!*
!*posn!* !*stdin!* !*stdout!* !$eol!$)$
!*errchan!* := nil$ %error channel number
!*posn!* := 0$ %current position on output line
%% %%
%% General Printing Functions %%
%% %%
% Pprin2 and pterpri changed by F.Kako.
% Original did not work in SLISP/370, since output must be buffered.
global '(!*pprinbuf!*);
procedure pprin2 arg;
begin
!*pprinbuf!* := arg . !*pprinbuf!*;
!*posn!* := !*posn!* + length explode2 arg;
end$
procedure pterpri;
begin
scalar ch,pbuf;
ch := wrs nil;
pbuf := reversip !*pprinbuf!*;
for each c in !*outchanl!* do
<<wrs c;
for each a in pbuf do
if gentranlang!* eq 'fortran then fprin2 a else prin2 a;
terpri()>>;
!*posn!* := 0;
!*pprinbuf!* := nil;
wrs ch
end$
%% %%
%% Error Handler %%
%% %%
%% Error & Warning Message Printing Routine %%
symbolic procedure gentranerr(msgtype, exp, msg1, msg2);
% Added check for !*errcont to aid graceful recovery from errors
% occurring in templates MCD 11.4.94
begin scalar holdich, holdoch, resp;
holdich := rds !*errchan!*;
holdoch := wrs !*errchan!*;
terpri();
if exp then prettyprint exp;
if (msgtype eq 'e) and not !*errcont then
<<
rds cdr !*stdin!*;
wrs cdr !*stdout!*;
rederr msg1
>>;
prin2 "*** ";
prin2t msg1;
if msg2 then resp := yesp msg2;
wrs holdoch;
rds holdich;
if not(resp or !*errcont) then error1()
end$
%% %%
%% Misc. Functions %%
%% %%
procedure min0(n1, n2);
max(min(n1, n2), 0)$
procedure nspaces n;
% Note n is assumed > 0 here.
begin scalar s;
for i := 1:n do s := ('!! . '! . s);
return intern compress s
end$
endmodule;
end;