File r36/help/PK-ROOTS.TEX artifact 2d06d169a5 on branch master


\section{Roots Package}
\begin{Introduction}{Roots Package}
\index{roots}\index{polynomial}
The root  finding package is designed  so that it can  
be  used to  find some  or  all of  the roots  of  univariate
polynomials  with  real or  complex  coefficients,  to  the  accuracy
specified by the user.                             

Not all operators of \name{roots package} are described here. For using
the operators 

\nameindex{isolater} (intervals isolating real roots)

\nameindex{rlrootno} (number of real roots in an interval)

\nameindex{rootsat-prec} (roots at system precision)

\nameindex{rootval} (result in equation form)

\nameindex{firstroot} (computing only one root)

\nameindex{getroot} (selecting roots from a collection)

please consult the full documentation of the package.

\end{Introduction}

\begin{Operator}{MKPOLY}
\index{polynomial}\index{roots}\index{interpolation}
Given a roots list as returned by \nameref{roots},
the operator \name{mkpoly} constructs a 
polynomial which has these numbers as roots.
\begin{Syntax}
\name{mkpoly} \meta{rl}
\end{Syntax}
where \meta{rl} is a \nameref{list} with equations, which
all have the same \nameref{kernel} on their left-hand sides
and numbers as right-hand sides.

\begin{Examples}
mkpoly{x=1,x=-2,x=i,x=-i};&
x**4 + x**3 - x**2 + x - 2\\
\end{Examples}

Note that this polynomial is unique only up to a numeric
factor.
\end{Operator}


\begin{Operator}{NEARESTROOT}
\index{roots}\index{solve}
The operator \name{nearestroot} finds one root of a polynomial
with an iteration using a given starting point.

\begin{Syntax}
\name{nearestroot}\(\meta{p}\,\meta{pt}\)
\end{Syntax}

where \meta{p} is a univariate polynomial
and \meta{pt} is a number. 

\begin{Examples}
nearestroot(x^2+2,2);&\{x=1.41421*i\}\\
\end{Examples}
The minimal accuracy of the result values is controlled by 
\nameref{rootacc}.
\end{Operator}

\begin{Operator}{REALROOTS}
\index{roots}\index{solve}
The operator \name{realroots} finds that real roots of a polynomial  
to an accuracy that is sufficient to separate them  and which is
a minimum of  6 decimal places.              

\begin{Syntax}
\name{realroots}\(\meta{p}\) or \\
\name{realroots}\(\meta{p}\,\meta{from},\meta{to}\)
\end{Syntax}

where \meta{p} is a univariate polynomial. 
The optional parameters \meta{from} and \meta{to} classify
an interval: if given, exactly the real roots in this
interval will be returned. \meta{from} and \meta{to}
can also take the values \name{infinity} or \name{-infinity}.
If omitted all real roots will be returned.
Result is a \nameref{list}
of equations which represent the roots of the polynomial at the
given accuracy.

\begin{Examples}
realroots(x^5-2);&\{x=1.1487\}\\
realroots(x^3-104*x^2+403*x-300,2,infinity);&\{x=3.0,x=100.0\}\\
realroots(x^3-104*x^2+403*x-300,-infinity,2);&\{x=1\}\\
\end{Examples}
The minimal accuracy of the result values is controlled by 
\nameref{rootacc}.
\end{Operator}


\begin{Operator}{ROOTACC}
\index{roots}\index{accuracy}
The operator \name{rootacc} allows you to set the accuracy
up to which the roots package computes its results.
\begin{Syntax}
\name{rootacc}\(\meta{n}\)
\end{Syntax}
Here \meta{n} is an integer value. The internal accuracy of
the \name{roots} package is adjusted to a value of
\name{max(6,n)}. The default value is \name{6}.
\end{Operator}

\begin{Operator}{ROOTS}
\index{roots}\index{solve}\index{polynomial}
The operator \name{roots} 
is  the main top level  function of the roots  package.
It will  find all roots, real and  complex, of the polynomial  p
to an accuracy that is sufficient to separate them  and which is
a minimum of  6 decimal places.               

\begin{Syntax}
\name{roots}\(\meta{p}\)
\end{Syntax}

where \meta{p} is a univariate polynomial. Result is a \nameref{list}
of equations which represent the roots of the polynomial at the
given accuracy. In addition, \name{roots}  stores
separate  lists of real  roots and complex  roots in the  global
variables \nameref{rootsreal} and \nameref{rootscomplex}. 

\begin{Examples}
roots(x^5-2);&\begin{multilineoutput}{3cm}
\{x=-0.929316 + 0.675188*i,
  x=-0.929316 - 0.675188*i,
  x=0.354967 + 1.09248*i,
  x=0.354967 - 1.09248*i, 
  x=1.1487\}
\end{multilineoutput}\\
\end{Examples}
The minimal accuracy of the result values is controlled by 
\nameref{rootacc}.
\end{Operator}

\begin{Operator}{ROOT\_VAL}
\index{roots}\index{solve}\index{polynomial}
The operator \name{root\_val} computes the roots of a 
univariate polynomial at system precision
(or greater if required for root separation) and presents 
its result as a list of numbers.
\begin{Syntax}
\name{roots}\(\meta{p}\)
\end{Syntax}

where \meta{p} is a univariate polynomial.

\begin{Examples}
root_val(x^5-2);&\begin{multilineoutput}{3cm}
\{-0.929316490603 + 0.6751879524*i,
 -0.929316490603 - 0.6751879524*i,
 0.354967313105 + 1.09247705578*i,
 0.354967313105 - 1.09247705578*i,
 1.148698355\}
\end{multilineoutput}\\
\end{Examples}
\end{Operator} 

\begin{Variable}{ROOTSCOMPLEX}
\index{roots}\index{complex}
When the operator \nameref{roots} is called the complex
roots are collected in the global variable \name{rootscomplex}
as \nameref{list}.
\end{Variable}


\begin{Variable}{ROOTSREAL}
\index{roots}\index{complex}
When the operator \nameref{roots} is called the real
roots are collected in the global variable \name{rootreal}
as \nameref{list}.
\end{Variable}


REDUCE Historical
REDUCE Sourceforge Project | Historical SVN Repository | GitHub Mirror | SourceHut Mirror | NotABug Mirror | Chisel Mirror | Chisel RSS ]