File r35/xlog/assist.log artifact c2f662e686 on branch master



Codemist Standard Lisp 3.54 for DEC Alpha: May 23 1994
Dump file created: Mon May 23 10:39:11 1994
REDUCE 3.5, 15-Oct-93 ...
Memory allocation: 6023424 bytes

+++ About to read file tstlib.red


% Tests of Assist Package version 2.0 for  REDUCE 3.4 and 3.4.1.
% DATE : 30 May 1993
% Author: H. Caprasse <caprasse@vm1.ulg.ac.be>

showtime;


Time: 0 ms


Comment 1. CONTROL OF SWITCHES;

;


switches;


      **** exp:=t ............. allfac:= t ****

      **** ezgcd:=nil ......... gcd:= nil ****

      **** mcd:=t ............. lcm:= t ****

      **** div:=nil ........... rat:= nil ****

      **** intstr:=nil ........ rational:= nil ****

      **** precise:=nil ....... reduced:= nil ****

      **** complex:=nil ....... rationalize:= nil ****

      **** factor:= nil ....... distribute:= nil ***
off exp;

 on gcd;


switches;


      **** exp:=nil ............. allfac:= t ****

      **** ezgcd:=nil ......... gcd:= t ****

      **** mcd:=t ............. lcm:= t ****

      **** div:=nil ........... rat:= nil ****

      **** intstr:=nil ........ rational:= nil ****

      **** precise:=nil ....... reduced:= nil ****

      **** complex:=nil ....... rationalize:= nil ****

      **** factor:= nil ....... distribute:= nil ***
switchorg;


switches;


      **** exp:=t ............. allfac:= t ****

      **** ezgcd:=nil ......... gcd:= nil ****

      **** mcd:=t ............. lcm:= t ****

      **** div:=nil ........... rat:= nil ****

      **** intstr:=nil ........ rational:= nil ****

      **** precise:=nil ....... reduced:= nil ****

      **** complex:=nil ....... rationalize:= nil ****

      **** factor:= nil ....... distribute:= nil ***
;


if !*mcd then "the switch mcd is on";


the switch mcd is on

if !*gcd then "the switch gcd is on";


;


comment 2. MANIPULATION OF THE LIST STRUCTURE:;

;


t1:=mklist(4);


t1 := {0,0,0,0}


Comment   MKLIST does NEVER destroy anything ;


mklist(t1,3);


{0,0,0,0}

mklist(t1,10);


{0,0,0,0,0,0,0,0,0,0}

;


sequences 3;


{{0,0,0},

 {1,0,0},

 {0,1,0},

 {1,1,0},

 {0,0,1},

 {1,0,1},

 {0,1,1},

 {1,1,1}}

lisp;


nil

sequences 3;


((0 0 0) (1 0 0) (0 1 0) (1 1 0) (0 0 1) (1 0 1) (0 1 1) (1 1 1))

algebraic;



frequency append(t1,t1);


{{0,8}}

elmult(a1,t1);


0

insert(a1,t1,2);


{0,a1,0,0,0}

li:=list(1,2,5);


li := {1,2,5}

insert_keep_order(4,li,lessp);


{1,2,4,5}

merge_list(li,li,lessp);


{1,1,2,2,5,5}

for i:=1:4 do t1:= (t1.i:=mkid(a,i));


% for i:=1:2 do t1:=(t1.i:=mkid(a,i));
t1.1;


a1

t1:=(t1.1) . t1;


t1 := {a1,a1,a2,a3,a4}

position(a2,t1);


3

pair(t1,t1);


{{a1,a1},{a1,a1},{a2,a2},{a3,a3},{a4,a4}}

depth list t1;


2

depth a1;


0

appendn(li,li,li);


{1,2,5,1,2,5,1,2,5}

;


comment 3. THE BAG STRUCTURE AND ITS ASSOCIATED FUNCTIONS
 ;

aa:=bag(x,1,"A");


aa := bag(x,1,A)

putbag bg1,bg2;


t

on errcont;


putbag list;


***** list invalid as BAG

off errcont;


aa:=bg1(x,y**2);


             2
aa := bg1(x,y )

;


if bagp aa then "this is a bag";


this is a bag

;


clearbag bg2;


;


depth bg2(x);


0

;


if baglistp aa then "this is a bag or list";


this is a bag or list

if baglistp list(x) then "this is a bag or list";


this is a bag or list

;


ab:=bag(x1,x2,x3);


ab := bag(x1,x2,x3)

al:=list(y1,y2,y3);


al := {y1,y2,y3}

first ab;


bag(x1)
  third ab;


bag(x3)
  first al;


y1

last ab;


bag(x3)
 last al;


y3

belast ab;


bag(x1,x2)
 belast al;


{y1,y2}

rest ab;


bag(x2,x3)
 rest al;


{y2,y3}

depth al;


1
 depth bg1(ab);


2

;


ab.1;


x1
 al.3;


y3

on errcont;


ab.4;


***** Expression bag(x1,x2,x3) does not have part 4

off errcont;


kernlist(aa);


    2
{x,y }

listbag(list x,bg1);


bg1(x)

size ab;


3
 length al;


3

remove(ab,3);


bag(x1,x2)

delete(y2,al);


{y1,y3}

reverse al;


{y3,y2,y1}

member(x3,ab);


bag(x3)

al:=list(x**2,x**2,y1,y2,y3);


        2
al := {x ,

        2
       x ,

       y1,

       y2,

       y3}

;


elmult(x**2,al);


2

position(y3,al);


5

;


repfirst(xx,al);


     2
{xx,x ,y1,y2,y3}

represt(xx,ab);


bag(x1,xx)

insert(x,al,3);


  2  2
{x ,x ,x,y1,y2,y3}

insert( b,ab,2);


bag(x1,b,xx)

insert(ab,ab,1);


bag(bag(x1,xx),x1,xx)

substitute (new,y1,al);


  2  2
{x ,x ,new,y2,y3}

;


appendn(ab,ab,ab);


{x1,xx,x1,xx,x1,xx}

append(ab,al);


           2  2
bag(x1,xx,x ,x ,y1,y2,y3)

append(al,ab);


  2  2
{x ,x ,y1,y2,y3,x1,xx}

;


comment Association list or bag may be constructed and thoroughly used;

;


l:=list(a1,a2,a3,a4);


l := {a1,a2,a3,a4}

b:=bg1(x1,x2,x3);


b := bg1(x1,x2,x3)

al:=pair(list(1,2,3,4),l);


al := {{1,a1},{2,a2},{3,a3},{4,a4}}

ab:=pair(bg1(1,2,3),b);


ab := bg1(bg1(1,x1),bg1(2,x2),bg1(3,x3))

;


comment : A BOOLEAN function abaglistp to test if it is an association;

;


if abaglistp bag(bag(1,2)) then "it is an associated bag";


it is an associated bag

;


% Values associated to the keys can be extracted
% first occurence ONLY.
;


asfirst(1,al);


{1,a1}

asfirst(3,ab);


bg1(3,x3)

;


assecond(a1,al);


{1,a1}

assecond(x3,ab);


bg1(3,x3)

;


aslast(z,list(list(x1,x2,x3),list(y1,y2,z)));


{y1,y2,z}

asrest(list(x2,x3),list(list(x1,x2,x3),list(y1,y2,z)));


{x1,x2,x3}

;


clear a1;


;


% All occurences.
asflist(x,bg1(bg1(x,a1,a2),bg1(x,b1,b2)));


bg1(bg1(x,a1,a2),bg1(x,b1,b2))

asslist(a1,list(list(x,a1),list(y,a1),list(x,y)));


{{x,a1},{y,a1}}

restaslist(bag(a1,x),bg1(bag(x,a1,a2),bag(a1,x,b2),bag(x,y,z)));


bg1(bg1(x,b2),bg1(a1,a2))

restaslist(list(a1,x),bag(bag(x,a1,a2),bag(a1,x,b2),bag(x,y,z)));


bag(bag(x,b2),bag(a1,a2))

;


comment 4. SETS AND THEIR MANIPULATION FUNCTIONS
;

ts:=mkset list(a1,a1,a,2,2);


ts := {a1,a,2}

if setp ts then "this is a SET";


this is a SET

;


union(ts,ts);


{a1,a,2}

diffset(ts,list(a1,a));


{2}

diffset(list(a1,a),ts);


{}

symdiff(ts,ts);


{}

intersect(listbag(ts,set1),listbag(ts,set2));


set1(a1,a,2)



COMMENT 5. MISCELLANEOUS UTILITY FUNCTIONS :;

;


clear a1,a2,a3,a,x,y,z,x1,x2,op$


;


% DETECTION OF A GIVEN VARIABLE IN A GIVEN SET
;


mkidnew();


G0

mkidnew(a);


aG1

dellastdigit 23;


2

detidnum aa;


detidnum a10;


10

detidnum a1b2z34;


34

list_to_ids list(a,1,rr,22);


a1rr22

;


if oddp 3 then "this is an odd integer";


this is an odd integer

;


<<prin2 1; followline 7; prin2 8;>>;

1
       8
;


operator foo;


foo(x):=x;


foo(x) := x

foo(x)==value;


value

x:=x;


x := value

;


clear x;


;


randomlist(10,20);


{8,1,8,0,5,7,3,8,0,5,5,9,0,5,2,0,7,5,5,1}

combnum(8,3);


56

permutations(bag(a1,a2,a3));


bag(bag(a1,a2,a3),bag(a1,a3,a2),bag(a2,a1,a3),bag(a2,a3,a1),

    bag(a3,a1,a2),bag(a3,a2,a1))

permutations {1,2,3};


{{1,2,3},{1,3,2},{2,1,3},{2,3,1},{3,1,2},{3,2,1}}

cyclicpermlist{1,2,3};


{{1,2,3},{2,3,1},{3,1,2}}

combinations({1,2,3},2);


{{2,3},{1,3},{1,2}}

labc:={a,b,c};


labc := {a,bg1(x1,x2,x3),c}

symmetrize(labc,foo,cyclicpermlist);


foo(bg1(x1,x2,x3),c,a) + foo(a,bg1(x1,x2,x3),c)

 + foo(c,a,bg1(x1,x2,x3))

symmetrize(labc,list,permutations);


{bg1(x1,x2,x3),a,c} + {bg1(x1,x2,x3),c,a} + {a,bg1(x1,x2,x3),c}

 + {a,c,bg1(x1,x2,x3)} + {c,bg1(x1,x2,x3),a} + {c,a,bg1(x1,x2,x3)}

symmetrize({labc},foo,cyclicpermlist);


foo({bg1(x1,x2,x3),c,a}) + foo({a,bg1(x1,x2,x3),c})

 + foo({c,a,bg1(x1,x2,x3)})

extremum({1,2,3},lessp);


1

extremum({1,2,3},geq);


3

extremum({a,b,c},ordp);


bg1(x1,x2,x3)

;


funcvar(x+y);


{x,y}

funcvar(sin log(x+y));


{x,y}

funcvar(sin pi);


funcvar(x+e+i);


{x}

;


depatom a;


a

depend a,x,y;


depatom a;


{x,y}

depend op,x,y,z;


implicit op;


op

explicit op;


op(x,y,z)

depend y,zz;


explicit op;


op(x,y(zz),z)

aa:=implicit op;


aa := op

clear op;


;


korder x,z,y;


korderlist;


(x z y)

;


if checkproplist({1,2,3},fixp) then "it is a list of integers";


it is a list of integers

;


if checkproplist({a,b1,c},idp) then "it is a list of identifiers";


it is a list of identifiers

;


if checkproplist({1,b1,c},idp) then "it is a list of identifiers";


;


lmix:={1,1/2,a,"st"};


            1
lmix := {1,---,a,st}
            2

;


extractlist(lmix,fixp);


{1}

extractlist(lmix,numberp);


    1
{1,---}
    2

extractlist(lmix,idp);


{a}

extractlist(lmix,stringp);


{st}

;


comment 6. PROPERTIES AND FLAGS:;

;


putflag(list(a1,a2),fl1,t);


t

putflag(list(a1,a2),fl2,t);


t

displayflag a1;


{fl1,fl2}

;


clearflag a1,a2;


displayflag a2;


{}

putprop(x1,propname,value,t);


x1

displayprop(x1,prop);


{}

displayprop(x1,propname);


{propname,value}

;


putprop(x1,propname,value,0);


displayprop(x1,propname);


{}

;


comment CONTROL FUNCTIONS:;

;


alatomp z;


t

z:=s1;


z := s1

alatomp z;


t

;


alkernp z;


t

alkernp log sin r;


t

;


precp(difference,plus);


t

precp(plus,difference);


precp(times,.);


precp(.,times);


t

;


if stringp x then "this is a string";


if stringp "this is a string" then "this is a string";


this is a string

;


if nordp(b,a) then "a is ordered before b";


operator op;


for all x,y such that nordp(x,y) let op(x,y)=x+y;


op(a,a);


op(a,a)

op(b,a);


op(bg1(x1,x2,x3),a)

op(a,b);


bg1(x1,x2,x3) + a

clear op;


;


depvarp(log(sin(x+cos(1/acos rr))),rr);


t

;


operator op;


symmetric op;


op(x,y)-op(y,x);


0

remsym op;


op(x,y)-op(y,x);


op(x,y) - op(y,x)

;


clear y,x,u,v;


clear op;


;


% DISPLAY and CLEARING of user's objects of various types entered
% to the console. Only TOP LEVEL assignments are considered up to now.
% The following statements must be made INTERACTIVELY. We put them
% as COMMENTS for the user to experiment with them. We do this because
% in a fresh environment all outputs are nil.
;


% THIS PART OF THE TEST SHOULD BE REALIZED INTERACTIVELY.
% SEE THE ** ASSIST LOG **  FILE .
%v1:=v2:=1;
%show variables;   % For REDUCE 3.3 ONLY.
%show scalars;
%aa:=list(a);
%show lists;
%array ar(2);
%show arrays;
%load matr$
%matrix mm;
%show matrices;
%x**2;
%saveas res;
%show saveids;
%suppress variables; % For REDUCE 3.3 ONLY
%show variables;     % For REDUCE 3.3 ONLY
%suppress scalars;
%show scalars;
%show lists;
%suppress all;
%show arrays;
%show matrices;
;


comment end of the interactive part;

;


clear op;


operator op;


op(x,y,z);


op(x,y,s1)

clearop op;


t

clearfunctions abs,tan;


     *** abs is unprotected : Cleared ***
     *** tan is a protected function: NOT cleared ***


"Clearing is complete"

;


comment  THIS FUNCTION MUST BE USED WITH CARE !!"!!!;

;


comment 6. HANDLING OF POLYNOMIALS

clear x,y,z;

COMMENT  To see the internal representation :;

;


off pri;


;


pol:=(x-2*y+3*z**2-1)**3;


        3                 2       2        2            2
pol := x  + ( - 6*y + 9*s1  - 3)*x  + (12*y  + ( - 36*s1  + 12)*y + 

            4        2             3         2        2            4
       27*s1  - 18*s1  + 3)*x - 8*y  + (36*s1  - 12)*y  + ( - 54*s1  

              2               6        4       2
       + 36*s1  - 6)*y + 27*s1  - 27*s1  + 9*s1  - 1

;


pold:=distribute pol;


         3      2       2  2        2              2          4
pold := x  - 3*x  + 9*s1 *x  - 6*y*x  + 3*x - 18*s1 *x + 27*s1 *x - 

             2                    2        3       2        2  2
        36*s1 *y*x + 12*y*x + 12*y *x - 8*y  - 12*y  + 36*s1 *y  - 6*

                 2          4          6        4       2
        y + 36*s1 *y - 54*s1 *y + 27*s1  - 27*s1  + 9*s1  - 1

;


on distribute;


leadterm (pold);


 3
x

pold:=redexpr pold;


              2       2  2        2              2          4
pold :=  - 3*x  + 9*s1 *x  - 6*y*x  + 3*x - 18*s1 *x + 27*s1 *x - 36*

          2                    2        3       2        2  2
        s1 *y*x + 12*y*x + 12*y *x - 8*y  - 12*y  + 36*s1 *y  - 6*y +

              2          4          6        4       2
         36*s1 *y - 54*s1 *y + 27*s1  - 27*s1  + 9*s1  - 1

leadterm pold;


      2
 - 3*x

;


off distribute;


polp:=pol$


leadterm polp;


 3
x

polp:=redexpr polp;


                      2       2        2            2
polp := ( - 6*y + 9*s1  - 3)*x  + (12*y  + ( - 36*s1  + 12)*y + 27*s1

        4        2             3         2        2            4
          - 18*s1  + 3)*x - 8*y  + (36*s1  - 12)*y  + ( - 54*s1  + 36

           2               6        4       2
        *s1  - 6)*y + 27*s1  - 27*s1  + 9*s1  - 1

leadterm polp;


              2       2
( - 6*y + 9*s1  - 3)*x

;


monom polp;


       2
{ - 3*x ,

     2  2
 9*s1 *x ,

         2
  - 6*y*x ,

 3*x,

         2
  - 18*s1 *x,

      4
 27*s1 *x,

         2
  - 36*s1 *y*x,

 12*y*x,

     2
 12*y *x,

       3
  - 8*y ,

        2
  - 12*y ,

      2  2
 36*s1 *y ,

  - 6*y,

      2
 36*s1 *y,

         4
  - 54*s1 *y,

      6
 27*s1 ,

         4
  - 27*s1 ,

     2
 9*s1 ,

 -1}

;


on pri;


;


splitterms polp;


      2  2
{{9*s1 *x ,

        2
  12*x*y ,

  12*x*y,

       4
  27*s1 *x,

  3*x,

       2  2
  36*s1 *y ,

       2
  36*s1 *y,

       6
  27*s1 ,

      2
  9*s1 },

     2
 {6*x *y,

     2
  3*x ,

       2
  36*s1 *x*y,

       2
  18*s1 *x,

     3
  8*y ,

      2
  12*y ,

       4
  54*s1 *y,

  6*y,

       4
  27*s1 ,

  1}}

;


splitplusminus polp;


        6       4         2  2        2  2        2         2
{3*(9*s1  + 9*s1 *x + 3*s1 *x  + 12*s1 *y  + 12*s1 *y + 3*s1

            2
     + 4*x*y  + 4*x*y + x),

         4          4        2            2        2        2      3
  - 54*s1 *y - 27*s1  - 36*s1 *x*y - 18*s1 *x - 6*x *y - 3*x  - 8*y

        2
  - 12*y  - 6*y - 1}

;


divpol(pol,x+2*y+3*z**2);


     4       2          2         2    2                     2
{9*s1  + 6*s1 *x - 24*s1 *y - 9*s1  + x  - 8*x*y - 3*x + 28*y  + 18*y

  + 3,

        3       2
  - 64*y  - 48*y  - 12*y - 1}

;


lowestdeg(pol,y);


0

;


comment 7.  HANDLING OF SOME TRANSCENDENTAL FUNCTIONS:;

;


trig:=((sin x)**2+(cos x)**2)**4;


              8           6       2           4       4
trig := cos(x)  + 4*cos(x) *sin(x)  + 6*cos(x) *sin(x)

                   2       6         8
         + 4*cos(x) *sin(x)  + sin(x)

trigreduce trig;


1

trig:=sin (5x);


trig := sin(5*x)

trigexpand trig;


                4            2       2         4
sin(x)*(5*cos(x)  - 10*cos(x) *sin(x)  + sin(x) )

trigreduce ws;


sin(5*x)

trigexpand sin(x+y+z);


cos(s1)*cos(x)*sin(y) + cos(s1)*cos(y)*sin(x) + cos(x)*cos(y)*sin(s1)

 - sin(s1)*sin(x)*sin(y)

;


;


hypreduce (sinh x **2 -cosh x **2);


-1

;


;


clear a,b;


pluslog log(a*log(x**b));


log(log(x)) + log(a) + log(b)

concsumlog((2*log x + a*b*log(x*y)+1)/(3*x**2*log(y)));


      a*b  a*b  2
 log(y   *x   *x ) + 1
-----------------------
              2
           3*x
      log(y    )

;


comment 8. HANDLING OF N6DIMENSIONAL VECTORS:;

;


clear u1,u2,v1,v2,v3,v4,w3,w4;


u1:=list(v1,v2,v3,v4);


u1 := {v1,v2,v3,v4}

u2:=bag(w1,w2,w3,w4);


u2 := bag(w1,w2,w3,w4)

%
sumvect(u1,u2);


{v1 + w1,

 v2 + w2,

 v3 + w3,

 v4 + w4}

minvect(u2,u1);


bag( - v1 + w1, - v2 + w2, - v3 + w3, - v4 + w4)

scalvect(u1,u2);


v1*w1 + v2*w2 + v3*w3 + v4*w4

crossvect(rest u1,rest u2);


{v3*w4 - v4*w3,

  - v2*w4 + v4*w2,

 v2*w3 - v3*w2}

mpvect(rest u1,rest u2, minvect(rest u1,rest u2));


0

scalvect(crossvect(rest u1,rest u2),minvect(rest u1,rest u2));


0

;


comment 9. HANDLING OF GRASSMANN OPERATORS:;

;


putgrass eta,eta1;


grasskernel:=
{eta(~x)*eta(~y) => -eta y * eta x when nordp(x,y),
(~x)*(~x) => 0 when grassp x};


grasskernel := {eta(~x)*eta(~y) =>  - eta(y)*eta(x) when nordp(x,y),

                ~x*~x => 0 when grassp(x)}

;


eta(y)*eta(x);


eta(y)*eta(x)

eta(y)*eta(x) where grasskernel;


 - eta(x)*eta(y)

let grasskernel;


eta(x)^2;


0

eta(y)*eta(x);


 - eta(x)*eta(y)

operator zz;


grassparity (eta(x)*zz(y));


1

grassparity (eta(x)*eta(y));


0

grassparity(eta(x)+zz(y));


parity undefined

clearrules grasskernel;


grasskernel:=
{eta(~x)*eta(~y) => -eta y * eta x when nordp(x,y),
eta1(~x)*eta(~y) => -eta x * eta1 y,
eta1(~x)*eta1(~y) => -eta1 y * eta1 x when nordp(x,y),
(~x)*(~x) => 0 when grassp x};


grasskernel := {eta(~x)*eta(~y) =>  - eta(y)*eta(x) when nordp(x,y),

                eta1(~x)*eta(~y) =>  - eta(x)*eta1(y),

                eta1(~x)*eta1(~y)

                 =>  - eta1(y)*eta1(x) when nordp(x,y),

                ~x*~x => 0 when grassp(x)}

;


let grasskernel;


eta1(x)*eta(x)*eta1(z)*eta1(w);


 - eta(x)*eta1(s1)*eta1(w)*eta1(x)

clearrules grasskernel;


remgrass eta,eta1;


clearop zz;


t

;


COMMENT 10. HANDLING OF MATRICES:;

;


clear m,mm,b,b1,bb,cc,a,b,c,d;


matrix mm(2,2);


baglmat(bag(bag(a1,a2)),m);


t

m;


[a1  a2]


on errcont;


;


baglmat(bag(bag(a1),bag(a2)),m);


***** (mat ((*sq ((((a1 . 1) . 1)) . 1) t) (*sq ((((a2 . 1) . 1)) . 1) t))) 
should be an identifier 

off errcont;


%    **** i.e. it cannot redefine the matrix! in order
%         to avoid accidental redefinition of an already given matrix;

clear m;

 baglmat(bag(bag(a1),bag(a2)),m);


t

m;


[a1]
[  ]
[a2]


on errcont;


baglmat(bag(bag(a1),bag(a2)),bag);


***** operator bag invalid as matrix

off errcont;


comment  Right since a bag-like object cannot become a matrix.;

;


coercemat(m,op);


op(op(a1),op(a2))

coercemat(m,list);


{{a1},{a2}}

;


on nero;


unitmat b1(2);


matrix b(2,2);


b:=mat((r1,r2),(s1,s2));


     [r1  r2]
b := [      ]
     [s1  s2]


b1;


[1  0]
[    ]
[0  1]

b;


[r1  r2]
[      ]
[s1  s2]


mkidm(b,1);


[1  0]
[    ]
[0  1]


;


seteltmat(b,newelt,2,2);


[r1    r2  ]
[          ]
[s1  newelt]


geteltmat(b,2,1);


s1

%
b:=matsubr(b,bag(1,2),2);


     [r1  r2]
b := [      ]
     [1   2 ]


;


submat(b,1,2);


[1]


;


bb:=mat((1+i,-i),(-1+i,-i));


      [i + 1   - i]
bb := [           ]
      [i - 1   - i]


cc:=matsubc(bb,bag(1,2),2);


      [i + 1  1]
cc := [        ]
      [i - 1  2]


;


cc:=tp matsubc(bb,bag(1,2),2);


      [i + 1  i - 1]
cc := [            ]
      [  1      2  ]


matextr(bb, bag,1);


bag(i + 1, - i)

;


matextc(bb,list,2);


{ - i, - i}

;


hconcmat(bb,cc);


[i + 1   - i  i + 1  i - 1]
[                         ]
[i - 1   - i    1      2  ]


vconcmat(bb,cc);


[i + 1   - i ]
[            ]
[i - 1   - i ]
[            ]
[i + 1  i - 1]
[            ]
[  1      2  ]


;


tpmat(bb,bb);


[ 2*i     - i + 1   - i + 1  -1]
[                              ]
[  -2     - i + 1   i + 1    -1]
[                              ]
[  -2     i + 1     - i + 1  -1]
[                              ]
[ - 2*i   i + 1     i + 1    -1]


bb tpmat bb;


[ 2*i     - i + 1   - i + 1  -1]
[                              ]
[  -2     - i + 1   i + 1    -1]
[                              ]
[  -2     i + 1     - i + 1  -1]
[                              ]
[ - 2*i   i + 1     i + 1    -1]


;


clear hbb;


hermat(bb,hbb);


[ - i + 1   - (i + 1)]
[                    ]
[   i          i     ]


% id hbb changed to a matrix id and assigned to the hermitian matrix
% of bb.
;


showtime;


Time: 3650 ms  plus GC time: 33 ms
end;
(assist 3650 33)


End of Lisp run after 3.66+0.76 seconds


REDUCE Historical
REDUCE Sourceforge Project | Historical SVN Repository | GitHub Mirror | SourceHut Mirror | NotABug Mirror | Chisel Mirror | Chisel RSS ]