Sat Jun 29 14:07:47 PDT 1991
REDUCE 3.4, 15-Jul-91 ...
1: 1:
2: 2:
3: 3: % Test of algebraic number package.
defpoly sqrt2**2-2;
1/(sqrt2+1);
SQRT2 - 1
(x**2+2*sqrt2*x+2)/(x+sqrt2);
X + SQRT2
on gcd;
(x**3+(sqrt2-2)*x**2-(2*sqrt2+3)*x-3*sqrt2)/(x**2-2);
2
X - 2*X - 3
--------------
X - SQRT2
off gcd;
sqrt(x**2-2*sqrt2*x*y+2*y**2);
X - SQRT2*Y
off arnum;
%to start a new algebraic extension.
defpoly cbrt5**3-5;
on rationalize;
1/(x-cbrt5);
2 2
X + CBRT5*X + CBRT5
-----------------------
3
X - 5
off rationalize;
off arnum;
%to start a new algebraic extension.
%The following examples are taken from P.S. Wang Math. Comp. 30,
% 134,(1976),p.324.
on factor;
defpoly i**2+1=0;
w0 := x**2+1;
W0 := (X + I)*(X - I)
w1 := x**4-1;
W1 := (X + I)*(X - I)*(X + 1)*(X - 1)
w2 := x**4+(i+2)*x**3+(2*i+5)*x**2+(2*i+6)*x+6;
2
W2 := (X + I*X + 3)*(X + (I + 1))*(X - (I - 1))
w3 := (2*i+3)*x**4+(3*i-2)*x**3-2*(i+1)*x**2+i*x-1;
2 2 2 3
W3 := (2*I + 3)*(X + I*X - 1)*(X - (----*I - ----))
13 13
off arnum;
defpoly a**2-5;
w4 := x**2+x-1;
1 1 1 1
W4 := (X + (---*A + ---))*(X - (---*A - ---))
2 2 2 2
off arnum;
defpoly a**2+a+2;
w5 := x**4+3*x**2+4;
W5 := (X + (A + 1))*(X + A)*(X - (A + 1))*(X - A)
off arnum;
defpoly a**3+2=0;
w6:=64*x**6-4;
2 1 1 2 2 1 1 2
W6 := 64*(X + (---*A)*X + ---*A )*(X - (---*A)*X + ---*A )
2 4 2 4
1 1
*(X + ---*A)*(X - ---*A)
2 2
off arnum;
defpoly a**4+a**3+a**2+a+1=0;
w7:=16*x**4+8*x**3+4*x**2+2*x+1;
1 3 1 2 1 1 1 3
W7 := 16*(X + (---*A + ---*A + ---*A + ---))*(X - ---*A )
2 2 2 2 2
1 2 1
*(X - ---*A )*(X - ---*A)
2 2
off arnum, factor;
defpoly sqrt5**2-5,cbrt3**3-3;
*** Defining polynomial for primitive element:
6 4 3 2
A1 - 15*A1 - 6*A1 + 75*A1 - 90*A1 - 116
cbrt3**3;
3
sqrt5**2;
5
cbrt3;
120 5 27 4 2000 3 1170 2 6676
- (------*A1 + ------*A1 - ------*A1 - ------*A1 + ------*A1
8243 8243 8243 8243 8243
6825
- ------)
8243
sqrt5;
120 5 27 4 2000 3 1170 2 14919
------*A1 + ------*A1 - ------*A1 - ------*A1 + -------*A1
8243 8243 8243 8243 8243
6825
- ------
8243
sqrt(x**2+2*(sqrt5-cbrt3)*x+5-2*sqrt5*cbrt3+cbrt3**2);
240 5 54 4 4000 3 2340 2 21595
X + (------*A1 + ------*A1 - ------*A1 - ------*A1 + -------*A1
8243 8243 8243 8243 8243
13650
- -------)
8243
on rationalize;
1/(x+sqrt5-cbrt3);
5 240 5 54 4 4000 3 2340 2 21595
(X - (------*A1 + ------*A1 - ------*A1 - ------*A1 + -------*A1
8243 8243 8243 8243 8243
13650 4 108 5 800 4 1800 3
- -------)*X - (------*A1 - ------*A1 - ------*A1
8243 8243 8243 8243
15433 2 15900 14465 3 3 2
+ -------*A1 + -------*A1 + -------)*X - (A1 - 15*A1)*X - (
8243 8243 8243
900 5 3919 4 15000 3 8775 2 148986
------*A1 - ------*A1 - -------*A1 - ------*A1 + --------*A1
8243 8243 8243 8243 8243
154225 1919 5 1050 4 18245 3
- --------)*X - (------*A1 + ------*A1 - -------*A1
8243 8243 8243 8243
12528 2 236725 73080 6 4 3
- -------*A1 + --------*A1 - -------))/(X - 15*X - 6*X
8243 8243 8243
2
+ 75*X - 90*X - 116)
off arnum, rationalize;
split!_field(x**3+2);
*** Splitting field is generated by:
6
A3 + 108
1 4 1
{----*A3 + ---*A3,
36 2
1 4
- ----*A3 ,
18
1 4 1
----*A3 - ---*A3}
36 2
for each j in ws product (x-j);
3
X + 2
split!_field(x**3+4*x**2+x-1);
*** Splitting field is generated by:
3 2
A4 + 4*A4 + A4 - 1
2 2
{A4,A4 + 3*A4 - 2, - (A4 + 4*A4 + 2)}
for each j in ws product (x-j);
3 2
X + 4*X + X - 1
split!_field(x**3-3*x+7);
*** Splitting field is generated by:
6 4 2
A6 - 18*A6 + 81*A6 + 1215
1 4 5 2 1 2
{-----*A6 - ----*A6 + ---*A6 + ---,
126 42 2 7
1 4 5 2 4
- (----*A6 - ----*A6 + ---),
63 21 7
1 4 5 2 1 2
-----*A6 - ----*A6 - ---*A6 + ---}
126 42 2 7
for each j in ws product (x-j);
3
X - 3*X + 7
split!_field(x**3+4*x**2+x-1);
*** Splitting field is generated by:
3 2
A7 + 4*A7 + A7 - 1
2 2
{A7,A7 + 3*A7 - 2, - (A7 + 4*A7 + 2)}
for each j in ws product (x-j);
3 2
X + 4*X + X - 1
split!_field(x**3-x**2-x-1);
*** Splitting field is generated by:
6 5 4 3 2
A9 - 6*A9 + 7*A9 + 12*A9 - 17*A9 - 6*A9 + 53
3 4 3 3 1 2 5 17
{ - (----*A9 - ----*A9 - ----*A9 - ----*A9 + ----),
76 19 38 38 76
3 4 6 3 1 2 14 17
----*A9 - ----*A9 - ----*A9 + ----*A9 + ----,
38 19 19 19 38
3 4 3 3 1 2 33 59
- (----*A9 - ----*A9 - ----*A9 + ----*A9 - ----)}
76 19 38 38 76
for each j in ws product (x-j);
3 2
X - X - X - 1
% A longer example.
off arnum;
defpoly a**6+3*a**5+6*a**4+a**3-3*a**2+12*a+16;
factorize(x**3-3);
1 5 1 4 1 3 7 2 11 4
{X - (----*A + ----*A + ---*A - ----*A + ----*A + ---),
12 12 6 12 12 3
1 5 1 4 2 3 1 2 2 7
X + (---*A + ---*A + ---*A - ---*A + ---*A + ---),
6 3 3 6 3 3
1 5 1 4 1 3 5 2 1
X - (----*A + ---*A + ---*A + ----*A - ---*A + 1)}
12 4 2 12 4
end;
4: 4:
Quitting
Sat Jun 29 14:08:43 PDT 1991