File r37/patches/patches.red artifact b22b9850a0 part of check-in f2fda60abd


module patches; % Patches to correct problems in REDUCE 3.7.

% Author: Anthony C. Hearn.

% Copyright (c) 2001 Anthony C. Hearn.  All Rights Reserved.

global '(patch!-date!*);

patch!-date!* := "6-Mar-2001";

% Bugs fixed by these patches.

% 28 Jun 99.  Gnuplot handling on the Macintosh was not correct.

%  7 Aug 99.  The evaluation of df(tan((sqrt(1-x^2)*asin acos x
%                + 2*sqrt(1-x^2)*x)/x),x) did not terminate.

% 20 Oct 99.  The sequence a1:=12x^2-16x+3; a2:=3x-4; off mcd;
%             on combineexpt; e^(a1/a2); gave the wrong answer.

%  8 Nov 99.  factorize(2*c*s*u^3*v^5-2*c*s*u^3*v +2*c*s*u*v^5-2*c*s*u*v
%               -s^2*u^4*v^4+s^2*u^4+s^2*u^2*v^6-s^2*u^2*v^4-s^2*u^2*v^2
%               +s^2*u^2 +s^2*v^6-s^2*v^2+u^4*v^4-u^4*v^2 -v^4+v^2) gave
%               a catastrophic error.

%  9 Nov 99.  Patched procedures generated a "redefined" message.

% 16 Nov 99.  Some EXCALC calculations could cause a catastrophic error.

% 18 Dec 99.  Integrations could give catastrophic errors because some
%             kernels were not unique.

% 31 Jan 00.  The sequence weight x=1,y=1; wtlevel 10; factor x; led to
%             the error that x was invalid as a kernel.

%  5 Feb 00.  The sequence x := mat((1,2)); sign sqrt 42; led to a
%             spurious error.

%  6 Feb 00.  The sequence on complex; sqrt(i*sqrt(3)-1); gave a wrong
%             result.

% 10 Feb 00.  Some root evaluations could lead to an error like
%             <equation> invalid as scalar.

% 18 Feb 00.  A sequence like m := mat((a,b),(c,d)); det sub(a=1,m);
%             would cause a type mismatch error.

% 18 Apr 00.  Complaints about the pattern matching limit of 5 terms
%             are resolved by the addition of a variable matchlength!*,
%             whose initial value of 5 can be changed as needed.

% 22 Apr 00.  The RULE mechanism left spurious expressions in various
%             non-local variables.

% 28 Jul 00.  A sum index within a derivative was treated as an identifier
%             (e.g., sum(x^n/factorial n*sub(x=0,df(cos x,x,n)),n,0,5);

%  2 Aug 00.  With complex on, some factorizations seemed to run forever
%             (e.g., factorize (400y^12+400y^10*z+40y^9*z^2+100y^8*z^2
%              +20y^7*z^5+120y^7*z^4+20y^7*z^3+41y^6*z^4+60y^5*z^7
%              +60y^5*z^5+20y^4*z^7+6y^4*z^6+20y^4*z^5
%              +2y^3*z^6+9y^2*z^8+6y*z^8+z^8))

% 29 Aug 00.  The sequence load_package gentran,scope; matrix a(10,10);
%             on gentranopt; gentran a(1,1) ::=: a(1,1); caused a
%             segmentation violation or similar error.

% 19 Sep 00.  Clearing some sqrt rules could lead to a spurious
%             "not found" message.

% 20 Sep 00.  The sequence load_package algint;
%             int(1/sqrt((2*e^c-y)/(e^c*y)),y);
%             caused a catastrophic error.

%  8 Nov 00.  Some sequences did not optimize completely when the SCOPE
%             command "optimize" was used.

% 20 Nov 00.  The sum operator did not always preserve a noncom order
%             (e.g., noncom u,v; sum(u(m)*v(1-m),m,0,1);)

% 12 Dec 00.  int with four arguments did not automatically load the
%             defint package.

% 13 Dec 00.  Some gcd calculations could produce an endless loop. E.g.,
%             in on numval,rounded; y:=x^4+x3*x^3+x2*x^2+x1*x+x0;
%             on fullroots; solve(y,x);

%  9 Jan 01.  SOLVE did not return results in same order as the given
%             variables (e.g., solve({y=x+t^2,x=y+u^2},{x,y,u,t});

% 14 Jan 01.  Some resultants (e.g. resultant(p^3-3p^2-a,3p*(p-2),p))
%             caused an error.

% 19 Jan 01.  Some algebraic integrals could produce a catastrophic
%             error when the algint package was loaded.

% 22 Jan 01.  Some algebraic integrals could produce a spurious zero
%             divisor message when the algint package was loaded (e.g.,
%               int((sqrt((-sqrt(a^4*x^2+4)+a^2*x)/(2*x))
%               *(-sqrt(a^4*x^2+4)*a^2*x-a^4*x^2-4))/(2*(a^4*x^2+4)),x))

% 23 Jan 01.  Inverses of matrices containing non-commuting objects
%             could be incorrect (e.g. noncom q; 1/mat((1,0,0),
%                (x/p*q 1,1,0),(x*y/(2p*(p-1))*q 1*q 1,y/(p-2)*q 1,1))).

%  2 Feb 01.  Some calls of SOLVE could produce a "zero divisor" error
%             error (e.g., solve(sqrt x*sqrt((4x^2*x+1)/x)-1=0,x)).

%  9 Feb 01.  The patched version of combine!-logs included an undefined
%             macro.

% 20 Feb 01.  Even with combineexpt on, expressions like a*a^x and
%             e*e^(2/(2-x)) did not simplify adequately.

%  6 Mar 01.  With algint loaded, some integrals would abort before
%             completion (e.g., int((x^(2/3)*sqrt(sqrt(y)*sqrt(pi) + 2pi
%             *y*x)*sqrt(- sqrt(y)*sqrt(pi)+2pi*y*x))/(4pi*y*x^3 - x),x)).

% Alg declarations.

fluid '(matchlength!*);

matchlength!* := 5;

flag('(matchlength!*),'share);

patch alg;

% 20 Oct 99, 20 Feb 01.

symbolic procedure exptunwind(u,v);
   begin scalar x,x1,x2,y,z,z2;
  a:  if null v then return u;
      x := caar v;
      x1 := cadr x;
      x2 := caddr x;
      y := cdar v;
      v := cdr v;
      if !*combineexpt and length u=1 and null cdr(z2 := kernels u)
	then u := {(({'expt,car z2,ldeg u} . 1) . lc u)};
      while (z := assocp1(x1,v)) and
         (z2 := simp {'plus,{'times,x2,y},{'times,caddar z,cdr z}})
         and (!*combineexpt or (fixp numr z2 and fixp denr z2))
	do <<if fixp numr z2 and fixp denr z2
               then <<x2 := divide(numr z2,denr z2);
                      if car x2>0
			then <<if fixp x1 then u := multf(x1**car x2,u)
				else u := multpf(mksp(x1,car x2),u);
                               z2 := cdr x2 ./ denr z2>>;
                      y := numr z2>>
	      else y := 1;
             x2 := prepsq(quotf(numr z2,y) ./ denr z2);
             v := delete(z,v)>>;
      if !*combineexpt and y=1 and fixp x1 then
         <<while (z := assocp2(x2,v)) and cdr z=1 and fixp cadar z do
              <<x1 := cadar z * x1; v := delete(z,v)>>;
           if eqcar(x2,'quotient) and fixp cadr x2 and fixp caddr x2
		and cadr x2<caddr x2
             then <<z := nrootn(x1**cadr x2,caddr x2);
                    if cdr z = 1 then u := multd(car z,u)
                     else if car z = 1
                      then u := multf(formsf(x1,x2,1),u)
		     else <<u := multd(car z,u);
                            v := (list('expt,cdr z,x2) . 1) . v>>>>
            else u := multf(formsf(x1,x2,y),u)>>
       else u := multf(formsf(x1,x2,y),u);
      go to a
   end;

% 31 Jan 00.

symbolic procedure factor1(u,v,w);
   begin scalar x,y,z,r;
        y := lispeval w;
        for each j in u do
          if (x := getrtype j) and (z := get(x,'factor1fn))
              then apply2(z,u,v)
            else <<while eqcar(j:=reval j,'list) and cdr j do 
                     <<r:=append(r,cddr j); j:=cadr j>>;
		   x := !*a2kwoweight j;
                   if v then y := aconc!*(delete(x,y),x)
	            else if not(x member y)
                     then msgpri(nil,j,"not found",nil,nil)
                    else y := delete(x,y)>>;
        set(w,y);
        if r then return factor1(r,v,w)
   end;

% 5 Feb 00.

algebraic (let sign(sqrt ~a)  => 1 when sign a=1);

% 18 Feb 00.

symbolic procedure getrtype u;
   begin scalar x,y;
    return
    if null u then nil
     else if atom u
      then if not idp u then not numberp u and getrtype1 u
	    else if flagp(u,'share)
	     then if (x := eval u) eq u then nil else getrtype x
	    else if (x := get(u,'avalue)) and
		       not(car x memq '(scalar generic))
		    or (x := get(u,'rtype)) and (x := list x)
                    then if y := get(car x,'rtypefn) then apply1(y,nil)
                          else car x
                  else nil
     else if not idp car u then nil
     else if (x := get(car u,'avalue)) and (x := get(car x,'rtypefn))
      then apply1(x,cdr u)
     else if car u eq 'sub then 'yetunknowntype
     else getrtype2 u
   end;

symbolic procedure let3(u,v,w,b,flgg);
   begin scalar x,y1,y2,z;
        x := u;
        if null x then <<u := 0; return errpri1 u>>
         else if numberp x then return errpri1 u;
       y2 := getrtype v;
       if b and idp x then <<remprop(x,'rtype); remprop(x,'avalue)>>;
	if (y1 := getrtype x)
	  then return if z := get(y1,'typeletfn)
			then lispapply(z,list(x,v,y1,b,getrtype v))
		       else typelet(x,v,y1,b,getrtype v)
	 else if y2 and not(y2 eq 'yetunknowntype)
	  then return if z := get(y2,'typeletfn)
			then lispapply(z,list(x,v,nil,b,y2))
		       else typelet(x,v,nil,b,y2)
         else letscalar(u,v,w,x,b,flgg)
   end;

% 18 Apr 00.

symbolic procedure mcharg1(u,v,w);
   if null u and null v then list nil
    else begin integer m,n;
        m := length u;
        n := length v;
        if flagp(w,'nary) and m>2
	  then if m<=matchlength!* and flagp(w,'symmetric)
                             then return mchcomb(u,v,w)
                else if n=2 then <<u := cdr mkbin(w,u); m := 2>>
		else return nil;
        return if m neq n then nil
                else if flagp(w,'symmetric) then mchsarg(u,v,w)
                else if mtp v then list pair(v,u)
                else mcharg2(u,v,list nil,w)
   end;

% 19 Sep 00.

symbolic procedure letscalar(u,v,w,x,b,flgg);
   begin
      if not atom x
               then if not idp car x then return errpri2(u,'hold)
                     else if car x eq 'df
                      then if null letdf(u,v,w,x,b) then nil
                            else return nil
                     else if getrtype car x
                      then return let2(reval x,v,w,b)
                     else if not get(car x,'simpfn)
                      then <<redmsg(car x,"operator");
                             mkop car x;
                             return let3(u,v,w,b,flgg)>>
                     else nil
         else if null b and null w
          then <<remprop(x,'avalue);
		 remprop(x,'rtype);
                 remflag(list x,'antisymmetric);
                 remprop(x,'infix);
		 remprop(x,'kvalue);
		 remflag(list x,'linear);
		 remflag(list x,'noncom);
                 remprop(x,'op);
                 remprop(x,'opmtch);
                 remprop(x,'simpfn);
                 remflag(list x,'symmetric);
                 wtl!* := delasc(x,wtl!*);
                 if flagp(x,'opfn)
                   then <<remflag(list x,'opfn); remd x>>;
		 rmsubs();
                 return nil>>;
        if eqcar(x,'expt) and caddr x memq frlis!*
          then letexprn(u,v,w,!*k2q x,b,flgg)
         else if eqcar(x,'sqrt)
	  then let2({'expt,cadr x,'(quotient 1 2)},v,w,
			   if b then b else 'sqrt);
        x := simp0 x;
        return if not domainp numr x then letexprn(u,v,w,x,b,flgg)
                else errpri1 u
   end;

symbolic procedure setk1(u,v,b);
   begin scalar x,y,z,!*uncached;
      !*uncached := t;
      if atom u
        then <<if null b
                 then <<if not get(u,'avalue)
                          then msgpri(nil,u,"not found",nil,nil)
                         else remprop(u,'avalue);
                        return nil>>
		else if (x:= get(u,'avalue)) then put!-avalue(u,car x,v)
		else put!-avalue(u,'scalar,v);
               return v>>
       else if not atom car u
	then rerror(alg,25,"Invalid syntax: improper assignment");
      u := car u . revlis cdr u;
      if null b or b eq 'sqrt
        then <<z:=assoc(u,wtl!*);
               if not(y := get(car u,'kvalue))
                  or not (x := assoc(u,y))
		 then <<if null z and null(b eq 'sqrt) then
                            msgpri(nil,u,"not found",nil,nil)>>
                else put(car u,'kvalue,delete(x,y));
		if z then wtl!*:=delasc(u,wtl!*);
               return nil>>
       else if not (y := get(car u,'kvalue))
	then put!-kvalue(car u,nil,u,v)
       else <<if x := assoc(u,y)
		then <<updoldrules(u,v); y := delasc(car x,y)>>;
	      put!-kvalue(car u,y,u,v)>>;
      return v
     end;

% 2 Feb 01.

symbolic procedure simprad(u,n);
   if !*reduced then multsq(radfa(numr u,n),invsq radfa(denr u,n))
     else begin scalar iflag,x,y,z;
       if !*rationalize then <<
	  y:=list(denr u,1);
          u:=multf(numr u, exptf(denr u,n-1)) ./ 1 >>
         else y := radf(denr u,n);
       if n=2 and minusf numr u
	 then <<iflag := t; x := radf(negf numr u,n)>>
	else x := radf(numr u,n);
       z := simp list('quotient,retimes cdr x, retimes cdr y);
       if domainp numr z and domainp denr z
	 then z := multsq(mkrootsq(prepf numr z,n),
			  invsq mkrootsq(prepf denr z,n))
	else <<if iflag
		 then <<iflag := nil;
			z := negsq z>>;
	       z := mkrootsq(prepsq z,n)>>;
       z := multsq(multsq(if !*precise and evenp n 
			    then car x ./ 1
                           else car x ./ 1, 1 ./ car y), z);
       if iflag then z := multsq(z,mkrootsq(-1,2));
       return z
   end;

symbolic procedure radfa(u,n);
   begin scalar x,y;
      x := fctrf u;
      if numberp car x then x := append(zfactor car x,cdr x)
       else x := (car x ./ 1) . cdr x;
      y := 1 ./ 1;
      for each j in x do y := multsq(y,radfb(car j,cdr j,n));
      return y
   end;

symbolic procedure radfb(u,m,n);
   begin scalar x,y;
      x := radf(u,n);
      y := exptf(car x,m) ./ 1;
      return multsq(exptsq(mkrootlsq(cdr x,n),m),y)
   end;

% 20 Feb 01.

symbolic procedure reval2(u,v);
   if v or null !*combineexpt or dmode!* then !*q2a1(simp!* u,v)
    else !*q2a1((simp!* u where !*mcd = nil),v);

endpatch;

% Algint declarations.

fluid '(!*noacn !*structure !*tra !*trmin gaussiani intvar sqrtflag);

fluid '(!*pvar listofallsqrts listofnewsqrts);

global '(modevalcount);

patch algint;

% 20 Sep 00.

symbolic procedure algebraiccase(expression,zlist,varlist);
begin
  scalar rischpart,deriv,w,firstterm;
  scalar sqrtflag,!*structure;
  sqrtflag:=t;
  sqrtsave(listofallsqrts,listofnewsqrts,list(intvar . intvar));
  rischpart:= errorset!*(list('doalggeom,mkquote expression),
			 !*backtrace);
  newplace list (intvar.intvar);
  if atom rischpart
    then <<
      if !*tra then printc "Inner integration failed";
      deriv:=nil ./ 1;
      rischpart:=deriv >>
    else
      if atom car rischpart
        then <<
      if !*tra or !*trmin then
        printc "The 'logarithmic part' is not elementary";
          return (nil ./ 1) . expression >>
      else <<
        rischpart:=car rischpart;
    deriv:=!*diffsq(rischpart,intvar) where sqrtflag=nil;
    if !*tra or !*trmin then <<
      printc "Inner working yields";
          printsq rischpart;
      printc "with derivative";
          printsq deriv >> >>;
  deriv:=!*addsq(expression,negsq deriv);
  if null numr deriv
    then return rischpart . (nil ./ 1);
  if null involvesq(deriv,intvar)
    then return !*addsq(rischpart,
                !*multsq(deriv,((mksp(intvar,1) .* 1) .+ nil) ./ 1))
          . (nil ./ 1);
  varlist:=getvariables deriv;
  zlist:=findzvars(varlist,list intvar,intvar,nil);
  varlist:=setdiff(varlist,zlist);
  firstterm:=simp!* car zlist;
  w:=sqrt2top !*multsq(deriv,invsq !*diffsq(firstterm,intvar));
  if null involvesq(w,intvar)
    then return !*addsq(rischpart,!*multsq(w,firstterm)) . (nil ./ 1);
  if !*noacn then interr "Testing only logarithmic code";
  deriv:=transcendentalcase(deriv,intvar,nil,zlist,varlist);
  return !*addsq(car deriv, rischpart) . cdr deriv
  end;

% 22 Jan 01, 9 Feb 01.

symbolic procedure combine!-logs(coef,logarg);
begin
  scalar ans,dencoef,parts,logs,lparts,!*rationalize,trueimag;
  !*rationalize:=t;
  coef:=simp!* coef;
  if null numr logarg then return coef;
  parts:=split!-real!-imag numr coef;
  if null numr cdr parts then return multsq(coef,logarg);
  dencoef:=multf(denr coef,denr logarg);
  if !*tra then <<
     printc "attempting to find 'real' form for";
     mathprint list('times,list('plus,prepsq car parts,
                                      list('times,prepsq cdr parts,'i)),
			   prepsq logarg) >>;
  logarg:=numr logarg;
  logs:= 1 ./ 1;
  while pairp logarg do <<
	if ldeg logarg neq 1 then interr "what a log";
	if atom mvar logarg then interr "what a log";
	if car mvar logarg neq 'log then interr "what a log";
        logs:=!*multsq(logs,
		       !*exptsq(simp!* cadr mvar logarg,lc logarg));
	logarg:=red logarg >>;
  logs:=rationalizesq logs;
  ans:=multsq(!*multsq(car parts,logs),1 ./ dencoef);
  lparts:=split!-real!-imag numr logs;
  if numr difff(denr cdr lparts,intvar)
    then interr "unexpected denominator";
  lparts:=!*multsq(denr cdr lparts ./ 1,car lparts) . cdr lparts;
  if not onep denr car lparts then interr "unexpected denominator";
  trueimag:=quotsq(addf(!*exptf(numr car lparts,2),
                        !*exptf(numr cdr lparts,2)) ./ 1,
                   !*exptf(denr logs,2) ./ 1);
  if numr diffsq(trueimag,intvar)
     then ans:=!*addsq(ans,
                     !*multsq(gaussiani ./ multf(2,dencoef),
                              !*multsq(simplogsq trueimag,cdr parts)));
  trueimag:=!*multsq(car lparts,!*invsq(numr cdr lparts ./ 1));
  if numr diffsq(trueimag,intvar)
     then ans:=!*addsq(ans,!*multsq(!*multsq(cdr parts,1 ./ dencoef),
                                  !*k2q list('atan,prepsq!* trueimag)));
  return ans;
  end;

%  6 Mar 01.

symbolic procedure modevalvar v;
   begin scalar w;
      if atom v
	then <<if (w := get(v,'modvalue)) then return w;
	       put(v,'modvalue,modevalcount);
	       modevalcount := modevalcount+1;
	       return modevalcount-1>>
       else if car v neq 'sqrt
	then <<if !*tra then <<princ "Unexpected algebraic:"; print v>>;
	       error1()>>
       else if numberp cadr v then return (mksp(v,1) .* 1) .+ nil;
      w := modeval(!*q2f simp cadr v,!*pvar);
      w := assoc(w,listofallsqrts);
      if w then return cdr w else return 'failed
   end;

endpatch;

% Excalc declarations.

global '(basisforml!* detm!* indxl!* metricd!* metricu!*);

smacro procedure ldpf u;
   caar u;

smacro procedure lowerind u;
   list('minus,u);

patch excalc;

% 16 Nov 99.

symbolic procedure mkmetric u;
   begin scalar x,y,z,okord;
     putform(list(cadr u,nil,nil),0);
     put(cadr u,'indxsymmetries,
         '((lambda (indl) (tot!-sym!-indp 
                             (evlis '((nth indl 1) 
                                      (nth indl 2)))))));
     put(cadr u,'indxsymmetrize,
         '((lambda (indl) (symmetrize!-inds '(1 2) indl))));
     flag(list cadr u,'covariant);
     okord := kord!*;
     kord!* := basisforml!*;
     x := simp!* caddr u;
     y := indxl!*;
     metricu!* := t;
     for each j in indxl!* do
       <<for each k in y do
           setk(list(cadr u,lowerind j,lowerind k),0);
         y := cdr y>>;
     for each j on partitsq(x,'basep) do
       if ldeg ldpf j = 2 then
           setk(list(cadr u,lowerind cadr mvar ldpf j,
                            lowerind cadr mvar ldpf j),
                mk!*sq lc j)
        else
           setk(list(cadr u,lowerind cadr mvar ldpf j,
                            lowerind cadr mvar lc ldpf j),
                mk!*sq multsq(lc j,1 ./ 2));
     kord!* := okord;
     x := for each j in indxl!* collect
            for each k in indxl!* collect
               simpindexvar list(cadr u,lowerind j,lowerind k);
	 z := subfg!*;
     subfg!* := nil;
     y := lnrsolve(x,generateident length indxl!*);
	 subfg!* := z;
     metricd!* := mkasmetric x;
     metricu!* := mkasmetric y;
     detm!* := mk!*sq detq x
   end;

endpatch;


% Ezgcd declarations.

fluid '(image!-set reduced!-degree!-lclst unlucky!-case);

symbolic smacro procedure polyzerop u; null u;

patch ezgcd;

% 8 Nov 99.

symbolic procedure ezgcdf(u,v);
   begin scalar kordx,x;
      kordx := kord!*;
      x := errorset2{'ezgcdf1,mkquote u,mkquote v};
      if null errorp x then return first x;
      setkorder kordx;
      return gcdf1(u,v)
   end;
 
symbolic procedure poly!-gcd(u,v);
   begin scalar !*exp,z;
        if polyzerop u then return poly!-abs v
         else if polyzerop v then return poly!-abs u
         else if u=1 or v=1 then return 1;
        !*exp := t;
        if quotf1(u,v) then z := v
	 else if quotf1(v,u) then z := u
	 else if !*gcd then z := gcdlist list(u,v)
	 else z := 1;
        return poly!-abs z
   end;
 
symbolic procedure gcdlist3(l,onestep,vlist);
  begin
    scalar unlucky!-case,image!-set,gg,gcont,l1,w,w1,w2,
           reduced!-degree!-lclst,p1,p2;
    l1:=for each p in l collect p . ezgcd!-comfac p;
    l:=for each c in l1 collect
        quotfail1(car c,comfac!-to!-poly cdr c,
                  "Content divison in GCDLIST3 failed");
    gcont:=gcdlist for each c in l1 collect cddr c;
    if domainp gcont then if not(gcont=1)
      then errorf "GCONT has numeric part";
    l := sort(for each p in l collect poly!-abs p,function ordp);
    w := nil;
    while l do <<
       w := car l . w;
       repeat l := cdr l until null l or not(car w = car l)>>;
    l := reversip w;
    w := nil;
    if null cdr l then return multf(gcont,car l);
    if domainp (gg:=car (l:=sort(l,function degree!-order))) then
      return gcont;
    if ldeg gg=1 then <<
       if division!-test(gg,l) then return multf(poly!-abs gg,gcont)
       else return gcont >>;
    if onestep then <<
       p1 := poly!-abs car l; p2 := poly!-abs cadr l;
       if p1=p2 then <<
             if division!-test(p1,cddr l) then return multf(p1,gcont) >>
       else <<
       gg := poly!-gcd(lc p1,lc p2);
       w1 := multf(red p1, quotfail1(lc p2, gg,
        "Division failure when just one pseudoremainder step needed"));
       w2 := multf(red p2,negf quotfail1(lc p1, gg,
        "Division failure when just one pseudoremainder step needed"));
       w := ldeg p1 - ldeg p2;
       if w > 0 then w2 := multf(w2, (mksp(mvar p2, w) .* 1) .+ nil)
	else if w < 0
	 then w1 := multf(w1, (mksp(mvar p1, -w) .* 1) .+ nil);
       gg := ezgcd!-pp addf(w1, w2);
       if division!-test(gg,l) then return multf(gg,gcont) >>>>;
      return gcdlist31(l,vlist,gcont,gg,l1)
   end;

endpatch;

% Int declarations.

fluid '(tanlist);

patch int;

% 18 Dec 99.

symbolic procedure findtrialdivs zl;
   begin scalar dlists1,args1;
      for each z in zl do
	 if exportan z
	   then <<if car z eq 'tan
		    then <<args1 := (mksp(z,2) .* 1) .+ 1;
			   tanlist := (args1 ./ 1) . tanlist>>
		   else args1 := !*kk2f z;
		  dlists1 := (z . args1) . dlists1>>;
      return dlists1
   end;

% 12 Dec 00.

symbolic procedure simpdint u;
   begin scalar low,upp,fn,var,x,y;
      if length u neq 4
	then rerror(int,2,"Improper number of arguments to INT");
      load!-package 'defint;
      fn := car u;
      var := cadr u;
      low := caddr u;
      upp := cadddr u;
      low := reval low;
      upp := reval upp;
      if low = upp then return nil ./ 1
       else if null getd 'new_defint then nil
       else if upp = 'infinity
	then if low = 0
	       then if not smemql('(infinity unknown),
				  x := defint!* {fn,var})
		      then return simp!* x else nil
	      else if low = '(minus infinity)
	       then return mkinfint(fn,var)
	      else if freeof(var,low)
	       then if not smemql('(infinity unknown),
				  x := defint!* {fn,var})
		     and not smemql('(infinity unknown),
				  y := indefint!* {fn,var,low})
		      then return simp!* {'difference,x,y} else nil
	      else nil
       else if upp = '(minus infinity) or low = 'infinity
	then return negsq simpdint {fn,var,upp,low}
       else if low = '(minus infinity)
	then return
	   simpdint{prepsq simp{'sub,{'equal,var,{'minus,var}},fn},
		     var,{'minus,upp},'infinity}
       else if low = 0
	then if freeof(var,upp)
		and not smemql('(infinity unknown),
			       x := indefint!* {fn,var,upp})
	       then return simp!* x else nil
       else if freeof(var,upp) and freeof(var,low)
		 and not smemq('(infinity unknown),
			       x := indefint!* {fn,var,upp})
		 and not smemql('(infinity unknown),
			       y := indefint!* {fn,var,low})
	then return simp!* {'difference,x,y};
      return mkdint(fn,var,low,upp)
   end;

endpatch;

patch matrix;

% 7 Aug 99.

symbolic procedure quotfexf!*1(u,v);
   if null u then nil
    else (if x then x
	   else (if denr y = 1 then numr y
		  else if denr (y := rationalizesq y)=1 then numr y
		  else rerror(matrix,11,
			      "Catastrophic division failure"))
		 where y=rationalizesq(u ./ v))
	  where x=quotf(u,v);

% 14 Jan 01.

algebraic procedure polyresultant(u,v,var);
   begin scalar g,h,delta,beta,temp,uu,vv;
      uu := coeff(u,var); vv := coeff(v,var);
      if length uu<length vv
	then return (-1 * polyresultant(v,u,var))
       else if (notunivariatep(uu) > 0) or (notunivariatep(vv)>0)
	then <<u := for i:=1:length uu sum
			(if fixp part(uu,i) then part(uu,i)
			  else (co(0,part(uu,i))))*var^(i-1);
	       v := for i:=1:length vv sum
			(if fixp part(vv,i) then part(vv,i)
			  else (co(0,part(vv,i))))*var^(i-1)>>;
      g := h := 1;
      while not (v=0) do
       <<delta := deg(u,var) - deg(v,var);
	 beta := (-1)^(delta +1) * g * h^delta;
	 h := h*(lcof(v,var)/h)^delta;
	 temp := u;
	 u := v;
	 beta := co(0,1/beta);
	 v := pseudo_remainder(temp,v,var)*beta;
	 g := lcof(u,var)>>;
	 if deg(u,var) = 0 then u := u^delta else return 0;
      let co_off; u := u; clearrules co_off;
      return u
   end;
   
% 23 Jan 01.

symbolic procedure lnrsolve(u,v);
   begin scalar temp,vlhs,vrhs,ok,
                !*exp,!*solvesingular;
   if !*ncmp then return clnrsolve(u,v);
   !*exp := t;
   if asymplis!* or wtl!* then
    <<temp := asymplis!* . wtl!*;
      asymplis!* := wtl!* := nil>>;
   vlhs := for i:=1:length car u collect intern gensym();
   vrhs := for i:=1:length car v collect intern gensym();
   u := car normmat augment(u,v);
   v := append(vlhs,vrhs);
   ok := setkorder v;
   u := foreach r in u collect prsum(v,r);
   v := errorset!*({function solvebareiss, mkquote u,mkquote vlhs},t);
   if caar v memq {'singular,'inconsistent} then 
      <<setkorder ok; rerror(matrix,13,"Singular matrix")>>;
   v := pair(cadr s,car s) where s = cadar v;
   u := foreach j in vlhs collect
	   coeffrow(negf numr q,vrhs,denr q) where q = cdr atsoc(j,v);
   setkorder ok;
   if temp then <<asymplis!* := car temp; wtl!* := cdr temp>>;
   return for each j in u collect
             for each k in j collect
                if temp then resimp k else cancel k;
   end;

endpatch;

% Ncpoly declarations.

fluid '(!*complex !*trnc dipvars!*);

patch ncpoly;

%  9 Jan 01.

symbolic procedure nc_factsolve(s,vl,all);
  begin scalar v,sb,ns,so,soa,sol,nz,w,q,z,r,abort;
   v:= numr simp car vl;
   ns:=for each e in s collect numr simp e;
   r:=t;
   while r do
   <<r:=nil; s:=ns; ns:=nil;
     for each e in s do if not abort then
     <<e:=absf numr subf(e,sb);
       while(q:=quotf(e,v)) do e:=q;
       if null e then nil else
       if domainp e or not(mvar e member vl) then abort:=t else
       if null red e and domainp lc e then
       <<w:=mvar e; sb:=(w . 0).sb; r:=t;
         vl:=delete(w,vl)>>
       else if not member(e,ns) then ns:=e.ns
     >>;
   >>;
   if abort or null vl then return nil;
   nc_factorize_timecheck();
   if null ns and vl then 
   <<sol:={for each x in vl collect x.1};
     goto done>>;
   s:=for each e in ns collect prepf e;
   if !*trnc then
    <<prin2 "solving ";
      prin2 length s; prin2 " polynomial equations for ";
      prin2 length vl;
      prin2t "variables";
      for each e in s do writepri(mkquote e,'only);>>;
   w:=(cdr solveeval{'list.s,'list.vl} where dipvars!*=nil);
 loop:
   nc_factorize_timecheck();
   if null w then goto done;
   so:= cdr car w; w:=cdr w; soa:=nil;
   if smemq('i,so) and null !*complex then go to loop;
   for each y in vl do if not smember(y,so) then
       <<soa:=(y . 1) . soa; nz:=t>>;
   for each y in so do
   <<z:=nc_factorize_unwrap(reval caddr y,soa); 
     nz:=nz or z neq 0;
     soa:=(cadr y . z).soa;
   >>;
   if not nz then goto loop;
   q:=assoc(car vl,soa);
   if null q or cdr q=0 then go to loop;
   soa := for each j in soa collect (car j . sublis(soa,cdr j));
   sol := soa . sol;
   if all then go to loop;
 done:
   sol:=for each s in sol collect append(sb,s);
   if !*trnc then
    <<prin2t "solutions:";
      for each w in sol do
       writepri(mkquote('list.
         for each s in w collect {'equal,car s,cdr s}),'only);
      prin2t "-------------------------";
    >>;
   return sol
  end;

endpatch;

% Plot declarations.

global '(!*plotpause !*plotusepipe dirchar!* opsys!* plotcleanup!*
	 plotcmds!* plotcommand!* plotdir!* plotdta!* plotheader!*
	 tempdir!*);

patch plot;

% 28 Jun 99.

symbolic procedure init_gnuplot();
 <<
!*plotpause := -1;
plotcleanup!* := {};
tempdir!* := getenv 'tmp;
if null tempdir!* then tempdir!* := getenv 'temp;
dirchar!* := "/";
plotcommand!* := "gnuplot";
opsys!* := assoc('opsys, lispsystem!*);
if null opsys!* then opsys!* := 'unknown
else opsys!* := cdr opsys!*;
if getenv "gnuplot" then plotdir!* := getenv "gnuplot"
 else if null plotdir!* and not (opsys!* = 'unix)
  then plotdir!* := get!-lisp!-directory();
if opsys!* = 'win32 then <<
    plotcommand!* := "wgnuplot";
    plotheader!* := "";
    dirchar!* := "\";
    plotdta!* := for each n in
       {"gnutmp.tm1", "gnutmp.tm2", "gnutmp.tm3", "gnutmp.tm4",
        "gnutmp.tm5", "gnutmp.tm6", "gnutmp.tm7", "gnutmp.tm8"}
       collect gtmpnam n;
    plotcleanup!* := if null tempdir!* then {"erase gnutmp.tm*"}
                     else {bldmsg("erase %w\gnutmp.tm*", tempdir!*)} >>
else if opsys!* = 'msdos then <<
    plotheader!* := "";      % ?? "set term vga";
    dirchar!* := "\";
    plotdta!* := for each n in
       {"gnutmp.tm1", "gnutmp.tm2", "gnutmp.tm3", "gnutmp.tm4",
        "gnutmp.tm5", "gnutmp.tm6", "gnutmp.tm7", "gnutmp.tm8"}
       collect gtmpnam n;
    plotcmds!*:= gtmpnam "gnutmp.tm0";
    plotcleanup!* := if null tempdir!* then {"erase gnutmp.tm*"}
                     else {bldmsg("erase %w\gnutmp.tm*", tempdir!*)} >>
else if opsys!* = 'riscos then <<
    plotheader!* := "";
    dirchar!* := ".";
    plotdta!* := for i:=1:10 collect tmpnam();
    plotcmds!*:= tmpnam();
    plotcleanup!* :=
       bldmsg("remove %w", plotcmds!*) .
          for each f in plotdta!* collect bldmsg("remove %w", f)
    >>
else if opsys!* = 'unix then <<
    plotheader!* := "set term x11";
    plotdta!* := for i:=1:10 collect tmpnam();
    plotcmds!*:= tmpnam();
    plotcleanup!* :=
       bldmsg("rm %w", plotcmds!*) .
          for each f in plotdta!* collect bldmsg("rm %w", f) >>
else if opsys!* = 'finder then <<
    plotcommand!* := "gnuplot";
    plotcmds!*:= "::::gnuplot:reduce.plt";
    plotheader!* := "";
    dirchar!* := ":";
    plotdta!* := for each n in
       {"::::gnuplot:gnutmp.tm1", "::::gnuplot:gnutmp.tm2",
        "::::gnuplot:gnutmp.tm3", "::::gnuplot:gnutmp.tm4",
        "::::gnuplot:gnutmp.tm5", "::::gnuplot:gnutmp.tm6",
        "::::gnuplot:gnutmp.tm7", "::::gnuplot:gnutmp.tm8"}
       collect gtmpnam n;
    plotcleanup!* := nil  >>
else <<
    rederr bldmsg("gnuplot for %w not available yet", opsys!*);
    plotdta!* := for i:=1:10 collect tmpnam();
    plotcmds!*:= tmpnam();
    plotheader!* := "set term dumb" >>;
if 'pipes member lispsystem!* then !*plotusepipe:=t
else plotcommand!* := bldmsg("%w %w", plotcommand!*, plotcmds!*);
if plotdir!* then
    plotcommand!* := bldmsg("%w%w%w",
                            plotdir!*, dirchar!*, plotcommand!*);
   nil >>;

endpatch;

patch poly;

% 7 Aug 99.

symbolic procedure rationalizesq u;
   begin scalar !*structure,!*sub2,v,x;
      if x := get(dmode!*,'rationalizefn) then u := apply1(x,u);
      powlis!* := '(i 2 (nil . t) -1 nil) . powlis!*;
      v := subs2q u;
      powlis!* := cdr powlis!*;
      return if domainp denr v then v
	      else if (x := rationalizef denr v) neq 1
	       then <<v := multf(numr v,x) ./ multf(denr v,x);
		      if null !*algint and null !*rationalize 
                        then v := gcdchk v;
		      subs2q v>>
	     else u
   end;

%  6 Feb 00.

symbolic procedure sqfrf u;
   begin integer n; scalar !*gcd,units,v,w,x,y,z,!*msg,r;
      !*gcd := t;
      if (r := !*rounded) then
         <<on rational; u := numr resimp !*f2q u>>;
      n := 1;
      x := mvar u;
      v := gcdf(u,diff(u,x));
      u := quotf(u,v);
      if flagp(dmode!*,'field) and ((y := lnc u) neq 1)
	then <<u := multd(!:recip y,u); v := multd(y,v)>>;
      while degr(v,x)>0 do
       <<w := gcdf(v,u);
         if u neq w then z := (quotf(u,w) . n) . z;
         v := quotf(v,w);
         u := w;
         n := n + 1>>;
         if r then
            <<on rounded;
	      u := numr resimp !*f2q u;
	      z := for each j in z
		       collect numr resimp !*f2q car j . cdr j>>;
      if v neq 1 and assoc(v,units) then v := 1;
      if v neq 1 then if n=1 then u := multf(v,u)
       else if (w := rassoc(1,z)) then rplaca(w,multf(v,car w))
       else if null z and not domainp v then z := {v . 1}
       else if null z and ((w := rootxf(v,n)) neq 'failed)
	then u := multf(w,u)
       else errach {"sqfrf failure",u,n,z};
      return (u . n) . z
   end;

% 2 Aug 00.

symbolic procedure sqfrp u;
   begin scalar !*ezgcd, dmode!*;
     if null getd 'ezgcdf1 then load_package ezgcd;
     !*ezgcd := t;
     return domainp gcdf!*(u,diff(u,mvar u))
   end;

% 13 Dec 00.

symbolic procedure gcdk(u,v);
   begin scalar lclst,var,w,x;
        if u=v then return u
         else if domainp u or degr(v,(var := mvar u))=0 then return 1
         else if ldeg u<ldeg v then <<w := u; u := v; v := w>>;
        if quotf1(u,v) then return v
         else if !*heugcd and (x := heu!-gcd(u,v)) then return x
         else if ldeg v=1
           or getd 'modular!-multicheck and modular!-multicheck(u,v,var)
           or not !*mcd
          then return 1;
    a:  w := remk(u,v);
        if null w then return v
         else if degr(w,var)=0 then return 1;
        lclst := addlc(v,lclst);
        if x := quotf1(w,lc w) then w := x
         else for each y in lclst do
	    if atom y and not flagp(dmode!*,'field)
	      or not
	       (domainp y and (flagp(dmode!*,'field)
		  or ((x := get(car y,'units))
		       and y member (for each z in x collect car z))))
	    then while (x := quotf1(w,y)) do w := x;
        u := v; v := prim!-part w;
        if degr(v,var)=0 then return 1 else go to a
   end;

% 19 Jan 01.

symbolic procedure quarticf pol;
   begin scalar !*sub2,a,a2,a0,b,dsc,p,p1,p2,q,shift,var;
      var := mvar pol;
      p := shift!-pol pol;
      a := coeffs car p;
      shift := caddr p;
      if cadr a then rerror(poly,16,list(pol,"not correctly shifted"))
	else if cadddr a then return list(1,pol);
      a2 := cddr a;
      a0 := caddr a2;
      a2 := car a2;
      a := car a; 
      q := quadraticf1(a,a2,a0);
      if not(q eq 'failed)
	then <<a2 := car q; q := cdr q;
	       a := exptsq(addsq(!*k2q mvar pol,shift),2);
	       b := numr subs2q quotsq(addsq(multsq(!*f2q car q,a),
					     !*f2q cadr q),
				       !*f2q cadr p);
	       a := numr subs2q quotsq(addsq(multsq(!*f2q caddr q,a),
					     !*f2q cadddr q),
				       !*f2q cadr p);
	       a := quadraticf!*(a,var);
	       b := quadraticf!*(b,var);
	       return multf(a2,multf(car a,car b))
			 . nconc!*(cdr a,cdr b)>>
       else if null !*surds or denr shift neq 1
	then return list(1,pol);
      shift := numr shift;
      if knowndiscrimsign eq 'negative then go to complex;
      dsc := powsubsf addf(exptf(a2,2),multd(-4,multf(a,a0)));
      p2 := minusf a0;
      if not p2 and minusf dsc then go to complex;
      p1 := not a2 or minusf a2;
      if not p1 then if p2 then p1 := t else p2 := t;
      p1 := if p1 then 'positive else 'negative;
      p2 := if p2 then 'negative else 'positive;
      a := rootxf(a,2);
      if a eq 'failed then return list(1,pol);
      dsc := rootxf(dsc,2);
      if dsc eq 'failed then return list(1,pol);
      p := invsq !*f2q addf(a,a);
      q := multsq(!*f2q addf(a2,negf dsc),p);
      p := multsq(!*f2q addf(a2,dsc),p);
      b := multf(a,exptf(addf(!*k2f mvar pol,shift),2));
      a := powsubsf addf(b,q);
      b := powsubsf addf(b,p);
      knowndiscrimsign := p1;
      a := quadraticf!*(a,var);
      knowndiscrimsign := p2;
      b := quadraticf!*(b,var);
      knowndiscrimsign := nil;
      return multf(car a,car b) . nconc!*(cdr a,cdr b);
   complex:
      a := rootxf(a,2);
      if a eq 'failed then return list(1,pol);
      a0 := rootxf(a0,2);
      if a0 eq 'failed then return list(1,pol);
      a2 := powsubsf addf(multf(2,multf(a,a0)),negf a2);
      a2 := rootxf(a2,2);
      if a2 eq 'failed then return list(1,pol);
      p := addf(!*k2f mvar pol,shift);
      q := addf(multf(a,exptf(p,2)),a0);
      p := multf(a2,p);
      a := powsubsf addf(q,p);
      b := powsubsf addf(q,negf p);
      knowndiscrimsign := 'negative;
      a := quadraticf!*(a,var);
      b := quadraticf!*(b,var);
      knowndiscrimsign := nil;
      return multf(car a,car b) . nconc!*(cdr a,cdr b)
   end;

endpatch;

% Rlisp declarations.

fluid '(newrules!*);

patch rlisp;

%  9 Nov 99.

symbolic procedure load!-package u;
   begin scalar x,y;
      if stringp u then return load!-package intern compress explode2 u
       else if null idp u then rederr list(u,"is not a package name")
       else if memq(u,loaded!-packages!*)
        then return u
       else if or(atom(x:= errorset(list('evload,list('quote,list u)),
                               nil,!*backtrace)),
                  cdr x)
        then rederr
           list("error in loading package",u,"or package not found");
      loaded!-packages!* := u . loaded!-packages!*;
      x := get(u,'package);
      if x then x := cdr x;
   a: if null x then go to b
       else if null atom get(car x,'package) then load!-package car x
       else if or(atom(y := errorset(list('evload,
                                         list('quote,list car x)),
                                    nil,!*backtrace)),
                  cdr y)
        then rederr list("module",car x,"of package",u,
                         "cannot be loaded");
      x := cdr x;
      go to a;
   b: if (x := get(u,'patchfn))
	then begin scalar !*usermode,!*redefmsg; eval list x end
   end;

% 22 April 00.

symbolic procedure begin11 x;
   begin scalar mode,result,newrule!*;
      if cursym!* eq 'end
	 then if terminalp() and null !*lisp!_hook
		then progn(cursym!* := '!*semicol!*, !*nosave!* := t,
			   return nil)
	       else progn(comm1 'end, return 'end)
       else if eqcar((if !*reduce4 then x else cadr x),'retry)
	then if programl!* then x := programl!*
	      else progn(lprim "No previous expression",return nil);
      if null !*reduce4 then progn(mode := car x,x := cadr x);
      program!* := x;
      if eofcheck() then return 'c else eof!* := 0;
      add2inputbuf(x,if !*reduce4 then nil else mode);
      if null atom x
	  and car x memq '(bye quit)
	then if getd 'bye
	       then progn(lispeval x, !*nosave!* := t, return nil)
	      else progn(!*byeflag!* := t, return nil)
       else if null !*reduce4 and eqcar(x,'ed)
	then progn((if getd 'cedit and terminalp()
		      then cedit cdr x
		     else lprim "ED not supported"),
		   !*nosave!* := t, return nil)
       else if !*defn
	then if erfg!* then return nil
	      else if null flagp(key!*,'ignore)
		and null eqcar(x,'quote)
	       then progn((if x then dfprint x else nil),
			  if null flagp(key!*,'eval) then return nil);
      if !*output and ifl!* and !*echo and null !*lessspace
	then terpri();
      result := errorset!*(x,t);
      if errorp result or erfg!*
	then progn(programl!* := list(mode,x),return 'err2)
       else if !*defn then return nil;
      if null !*reduce4
	then if null(mode eq 'symbolic) then x := getsetvars x else nil
       else progn(result := car result,
		  (if null result then result := mkobject(nil,'noval)),
		  mode := type result,
		  result := value result);
      add2resultbuf((if null !*reduce4 then car result else result),
		    mode);
      if null !*output then return nil
       else if null(semic!* eq '!$)
	then if !*reduce4 then (begin
		   terpri();
		   if mode eq 'noval then return nil
		    else if !*debug then prin2t "Value:";
		   rapply1('print,list list(mode,result))
		 end)
       else if mode eq 'symbolic
	      then if null car result and null(!*mode eq 'symbolic)
		     then nil
	      else begin
		  terpri();
		  result:=
		       errorset!*(list('print,mkquote car result),t)
		    end
       else if car result
	then result := errorset!*(list('assgnpri,mkquote car result,
				       (if x then 'list . x else nil),
				       mkquote 'only),
				  t);
      if null !*reduce4
	then return if errorp result then 'err3 else nil
       else if null(!*mode eq 'noval)
	then progn(terpri(), prin2 "of type: ", print mode);
      return nil
   end;

endpatch;

% Roots declarations.

fluid '(rootacc!#!# rootacc!#!# !*noeqns);

patch roots;

% 10 Feb 00.

symbolic procedure root_val x;
   roots x
      where rootacc!#!#=p, iniprec!#=p where p=precision 0, !*msg=nil,
	    !*noeqns=t;

endpatch;

% Scope declarations.

global '(kvarlst prevlst varlst!*);

patch scope;

% 29 Aug 00.

symbolic procedure maxtype type;
   if atom type then type
    else if pairp cdr type then cadr type else car type;

%  8 Nov 00.

symbolic procedure prepmultmat(preprefixlist);
begin scalar tlcm,var,varexp,kvl,kfound,pvl,pfound,tel,ratval,ratlst,
                                                      newvarlst,hvarlst;
 hvarlst:= nil;
 while not null (varlst!*) do
 <<var := car varlst!*; varlst!* := cdr varlst!*;
   if flagp(var,'ratexp)
    then
     <<tlcm:=1;
       remflag(list var,'ratexp);
       foreach elem in get(var,'varlst!*) do
        if pairp cdr elem then tlcm := lcm2(tlcm,cddr elem);
       varexp:=fnewsym();
       tel:=(varexp.(if tlcm = 2
                 then list('sqrt,var)
                 else list('expt,var,
                         if onep cdr(tel:=simpquot list(1,tlcm)) then
                            car tel
                         else
                            list('quotient,car tel,cdr tel))));
       if assoc(var,kvarlst)
        then
         <<kvl:=kfound:=nil;
           while kvarlst and not(kfound) do
            if caar(kvarlst) eq var
             then
              << kvl:=tel.kvl; kfound:=t;
                 pvl:=pfound:=nil; prevlst:=reverse(prevlst);
                 while prevlst and not(pfound) do
                  if cdar(prevlst) eq var
                   then << pvl:=cons(caar prevlst,varexp).pvl;
                           pfound:=t
                        >>
                   else << pvl:=car(prevlst).pvl;
                           prevlst:=cdr(prevlst)
                        >>;
                 if pvl then
                  if prevlst then prevlst:=append(reverse prevlst,pvl)
                             else prevlst:=pvl
              >>
             else
              << kvl:=car(kvarlst).kvl; kvarlst:=cdr kvarlst>>;
           if kvl then
             if kvarlst then kvarlst:=append(reverse kvl,kvarlst)
                      else kvarlst:=reverse kvl
         >>
        else preprefixlist:=tel.preprefixlist;
       ratlst:=newvarlst:=nil;
       foreach elem in get(var,'varlst!*) do
        if pairp cdr elem
         then 
          << ratval:=divide((tlcm * cadr elem)/(cddr elem),tlcm);
             ratlst:=cons(car elem,cdr ratval).ratlst;
             if car(ratval)>0
              then newvarlst:=cons(car elem,car ratval).newvarlst
          >>
         else newvarlst:=elem.newvarlst;
       if ratlst
        then << put(varexp,'varlst!*,reverse ratlst);
                hvarlst:=varexp.hvarlst
             >>;
       if newvarlst
        then << put(var,'varlst!*,reverse newvarlst);
                hvarlst:=var.hvarlst
             >>
        else remprop(var,'varlst!*)
     >>
    else hvarlst:=var.hvarlst
 >>;
 varlst!* := hvarlst;
 return preprefixlist
   end;

endpatch;

% Solve declarations.

fluid '(!*multiplicities vars!*);

global '(multiplicities!*);

patch solve;

%  9 Jan 01.

symbolic procedure !*solvelist2solveeqlist u;
   begin scalar x,y,z;
      u := for each j in u collect solveorder j;
      for each j in u do
         <<if caddr j=0 then rerror(solve,2,"zero multiplicity")
            else if null cadr j
             then  x := for each k in car j collect
                                               list('equal,!*q2a k,0)
            else x := for each k in pair(cadr j,car j)
                          collect list('equal,car k,!*q2a cdr k);
           if length vars!* > 1 then x := 'list . x else x := car x;
           z := (caddr j . x) . z>>;
      z := sort(z,function ordp);
      x := nil;
      if !*multiplicities
	 then <<for each k in z do for i := 1:car k do x := cdr k . x;
		multiplicities!* := nil>>
       else <<for each k in z do << x := cdr k . x; y := car k . y>>;
	      multiplicities!* := 'list . reversip y>>;
      return 'list . reversip x
   end;

symbolic procedure solveorder u;
   begin scalar v,x,y,z;
      v := vars!*;
      x := cadr u;
      if length x<length v then v := setdiff(v,setdiff(v,x));
      if null x or x=v then return u;
      y := car u;
      while x do <<z := (car x . car y) . z; x := cdr x; y := cdr y>>;
      x := for each j in v collect
	      if null (y := assoc(j,z)) then errach "SOLVE confusion"
	       else cdr y;
      return x . v . cddr u
   end;

% 2 Feb 01.

symbolic procedure check!-solns(z,ex,var);
   begin scalar x;
      if errorp (x :=
	    errorset2 {'check!-solns1,mkquote z,mkquote ex,mkquote var})
	then return
	   check!-solns1(z,(numr simp!* prepf ex where !*reduced=t),var)
       else return car x
   end;

symbolic procedure check!-solns1(z,ex,var);
   begin scalar x,y,fv,sx,vs;
      fv := freevarl(ex,var);
      for each z1 in z do
        fv := union(fv,union(freevarl(numr caar z1,var),
                             freevarl(denr caar z1,var)));
      fv := delete('i,fv);
      if fv then for each v in fv do
        if not flagp(v,'constant) then
           vs := (v . list('quotient,1+random 999,1000)) . vs;
      sx := if vs then numr subf(ex,vs) else ex;
      while z do
         if null cadar z then <<z := nil; x := 'unsolved>>
         else if
           <<y := numr subf(ex,list(caadar z . mk!*sq caaar z));
             null y
             or fv and null(y := numr subf(sx,list(caadar z .
                   mk!*sq subsq(caaar z,vs))))
             or null numvalue y>>
           then <<x := car z . x; z := cdr z>>
          else z := cdr z;
      return if null x then 'unsolved else x
   end;

endpatch;

% Sum declarations.

fluid '(sum_last_attempt_rules!* !*zeilberg);

patch sum;

% 28 Jul 00.

symbolic procedure freeof!-df(u, v);
   if atom u then t
    else if car(u) eq 'df
     then freeof!-df(cadr u, v) and not smember(v,cddr u)
    else freeof!-dfl(cdr u, v);

symbolic procedure freeof!-dfl(u, v);
   if null u then t else freeof!-df(car u,v) and freeof!-dfl(cdr u,v);

symbolic procedure simp!-sum u;
   begin scalar y;
      y := cdr u;
      u := car u;
      if not atom y and not freeof!-df(u, car y) then
	if atom y
	       then return !*p2f(car fkern(list('sum,u)) .* 1) ./ 1
	 else return sum!-df(u, y);
      u := simp!* u;
      return if null numr u then u
	      else if atom y
               then !*p2f(car fkern(list('sum,prepsq u)) .* 1) ./ 1
	      else if !*zeilberg then gosper!*(mk!*sq u,y)
	      else simp!-sum0(u,y)
   end;

symbolic procedure sum!-subst(u,x,a);
   if u = x then a
    else if atom u then u
    else sum!-subst(car u, x,a) . sum!-subst(cdr u,x,a);

symbolic procedure sum!-df(u,y);
   begin scalar w,z,upper,lower,dif;
      if length(y) = 3 then  <<
	 lower := cadr y;
	 upper := caddr y;
	 dif := addsq(simp!* upper, negsq simp!* lower);
	 if denr dif = 1 then
	    if null numr dif
	       then return simp!* sum!-subst(u, car y, upper)
	       else if fixp numr dif then dif := numr dif
	       else dif := nil
	   else dif := nil;
	 if dif and dif <= 0 then return nil ./ 1 >>;
     if null dif then <<
	  z := 'sum . (u . y);
	  let sum_last_attempt_rules!*;
	  w:= opmtch z;
	  rule!-list (list sum_last_attempt_rules!*,nil);
	  return if w then simp w else mksq(z,1)>>;
     z := nil ./ 1;
  a: if dif < 0 then return z;
     z := addsq(z,simp!* sum!-subst(u, car y, list('plus,lower,dif)));
     dif := dif - 1;
     go to a
   end;

% 20 Nov 00.

symbolic procedure termlst(u,v,klst);
   begin scalar x,kern,lst;
      if null u then return nil
       else if null klst or domainp u
	then return list multsq(v,!*f2q u);
      kern := car klst;
      klst := cdr klst;
      x := setkorder list kern;
      u := reorder u;
      v := reorder(numr v) ./ reorder(denr v);
      while not domainp u and mvar u eq kern do <<
         lst := nconc(termlst(lc u, multsq(!*p2q lpow u, v),klst),lst);
         u := red u>>;
      if u then lst := nconc(termlst(u,v,klst),lst);
      setkorder x;
      return lst
   end;

endpatch;

endmodule;

end;


REDUCE Historical
REDUCE Sourceforge Project | Historical SVN Repository | GitHub Mirror | SourceHut Mirror | NotABug Mirror | Chisel Mirror | Chisel RSS ]