module idexf;
% Author: Eberhard Schruefer
global '(exfideal!*);
symbolic procedure exterior!-ideal u;
begin scalar x,y;
rmsubs();
for each j in u do
if indexvp j then
for each k in mkaindxc(y := flatindxl cdr j,nil) do
x := partitsq(simpindexvar(car j . subla(pair(y,k),cdr j)),
'wedgefp) . x
else x := partitsq(simp!* j,'wedgefp) . x;
exfideal!* := append(x,exfideal!*);
end;
rlistat '(exterior!-ideal);
symbolic procedure remexf(u,v);
begin scalar lu,lv,x,y,z;
lv := ldpf v;
a: if null u or domainp(lu := ldpf u) then
return u;
if x := divexf(lu,lv) then
<<y := partitsq(simp list('wedge,prepf v,x),'wedgefp);
z := negsq quotsq(lc u,lc y);
u := addpsf(u,multpsf(1 .* z .+ nil,y))>>
else return u;
go to a
end;
symbolic procedure divexf(u,v);
begin scalar x,y;
x := prepf u;
y := prepf v;
if atom x then x := list x
else if car x eq 'wedge then x := cdr x;
if atom y then y := list y
else if car y eq 'wedge then y := cdr y;
a: if null y then return 'wedge . x;
if null(x := delform(car y,x)) then return nil;
y := cdr y;
go to a
end;
symbolic procedure delform(u,v);
delform1(u,v,nil);
symbolic procedure delform1(u,v,w);
if null v then nil
else if u = car v then if w or cdr v
then append(reverse w,cdr v)
else list 1
else delform1(u,cdr v,car v . w);
symbolic procedure exf!-mod!-ideal u;
begin
for each j in exfideal!* do u := remexf(u,j);
return u
end;
endmodule;
end;