File r38/packages/assist/partitns.red artifact 9b4426f8af part of check-in f16ac07139


module partitns;

% definitions of particular tensors.

global '(dimex!* sgn!*  signat!* spaces!* numindxl!* pair_id_num!*);

fluid('(dummy_id!* g_dvnames epsilon!*)); 

% epsilon!* keeps track of the various epsilon tensors 
% which may be defined when onespace is OFF
% It is a list pairs (<space-name> . <name>)

switch exdelt; % default is OFF

switch onespace;

!*onespace:=t;  % working inside a unique space is the default.

flag(list('delta,'epsilon,'del,'eta,'metric), 'reserved); % they are keywords.

symbolic flag(list('make_partic_tens),'opfn);

symbolic procedure make_partic_tens(u,v);
% u is a bare identifier (free of properties) 
% the result is T(rue) when it suceeds to create 
% the properties of being a particular tensor on u.
% can be trivially generalized to other tensors.
 if v memq {'delta,'eta,'epsilon,'del,'metric} then
 << 
    if get(u,'avalue) 
% or (get(u,'reserved) and null flagp(u,'tensor))
     or getrtype u  or (gettype u eq 'procedure) or 
     % is this necessary? 
     (u memq list('sin,'cos,'tan,'atan,'acos,'asin,'df,'int))  then 
        rerror(cantens,5,list(u,"may not be defined as tensor"))  
     else 
    if flagp(u,'tensor) then 
      <<lpri {"*** Warning:", u,"redefined as particular tensor"};
        remprop(u,'kvalue);
        remprop(u,'simpfn);
        remprop(u,'bloc_diagonal);
        remflag(list u,'generic);
      >>;
% the 'name' indicator allows to find
% the name chosen for a particular tensor from the keyword 
% associated to it. 
% Only ONE tensor of type 'delta' and 'eta' are allowed so:     
  (if x and v memq {'delta,'eta,'del} then rem_tensor1 x)where x=get(v,'name);
   make_tensor(u,nil);  % contains the action of rem_tensor
   put(u,'partic_tens, if v = 'delta then 'simpdelt
                        else 
                       if v = 'eta then 'simpeta
                        else
                       if v = 'epsilon then 'simpepsi
                        else 
                       if v = 'del then 'simpdel
                        else 
                       if v= 'metric then 'simpmetric);
   if null !*onespace and v = 'epsilon 
        then 
          if epsilon!* 
                then <<put(v,'name,u);
                       lpri {"*** Warning:", u,"MUST belong to a space"};>>  
               else nil; 
    put(v,'name, u);
   if v memq {'metric,'delta} then <<flag(list u,'generic);
                                         make_bloc_diagonal u>>;
   t
 >>
      else "unknown keyword";



symbolic procedure find_name u;
% find the name of a particular tensor whose keyword is u.
% Must still be extended for u=epsilon
(if null x then 
      rerror(cantens,6,{" no name found for", list u})
 else x)where x=get(u,'name);

% **** Simplification functions for particular tensors


symbolic procedure simpdelt (x,varl);
% x is is a list {<tensor> indices}
% for instance (tt a (minus b)) for tt(a,-b)
% varl is the set of variables {v1,v2, ...}
% result is the simplified form of the Dirac delta function if varl is nil 
% and cdr x is nil.
 If varl and null cdr x then !*k2f(car x . varl . nil) else
  if null varl or null cdr varl then
 begin scalar delt,ind,y,yv,yc;
  delt := car x; ind:= cdr x;
  y:=split_cov_cont_ids ind;
 if (length car y * length cadr y) neq 1 then 
   rerror(cantens,7, "bad choice of indices for DELTA tensor");
  yv:=caar y; 
  yc:=caadr y;
 % The conditional statement below can be suppressed if 
 % 'wholespace' can be defined with an indexrange.
% if get(delt,'belong_to_space) eq  'wholespace then 
%    if get_sign_space('wholespace) = 0 then 
%      if yv='!0 or yc ='!0 then
%        rerror(cantens,2,"bad value of indices for DELTA tensor");
 if !*id2num yv and !*id2num yc then return 
     if  yv=yc  then 1  
      else  0
  else 
  if !*onespace then return 
       if yv eq yc then dimex!* 
       else !*k2f(delt . append(cadr y,lowerind_lst car y))
  else return
   if null get(yv,'space) and yv eq yc then 
      if  assoc('wholespace,spaces!*) then !*k2f get_dim_space 'wholespace 
       else "not meaningful"  
    else
   if  yv eq yc then  !*k2f space_dim_of_idx yv  
     else  !*k2f(delt . append(cadr y,lowerind_lst car y))
 end 
else "not meaningful";

symbolic procedure simpdel u;
% u is the list {<del-name> <covariant indices>
% <contravariant indices>}
% when 'DEL' is used by the system through simpepsi, 
% indices are already ordered and, when 'canonical' is entered,
% they are again ordered after contractions. So ordering is 
% necessary only if the user enters it from the start.
% in spite of this, the procedure is made to order them 
% in all cases. REFINEMENTS to avoid that are possible.
% returns a standard form.
  begin scalar del,ind,x,idv,idc,idvn,idcn,bool,spweight;
        integer free_ind,tot_ind,dim_space;
   del:= car u;
   ind:=cdr u; 
   spweight:=1;
 % though it is antisymmetric separately with respect to the cov
 % and cont indices we do not declare it as such for the time being.
   x:=split_cov_cont_ids ind;
   idv:= car x; idc:=cadr x; 
   if length idv neq length idc then 
      rerror(cantens,7, "bad choice of indices for DEL tensor")
    else  
     if null !*onespace then
       if null symb_ids_belong_same_space!:(
                     append(idv,idc),nil) then
        rerror(cantens,7, "all indices should belong to the SAME space")
    else 
   if repeats idv or repeats idc then return 0
    else
   if length idc =1 then return
      apply2('simpdelt, find_name('delta) . append(lowerind_lst idv,idc),nil);
  % here we shall start to find the dummy indices which are internal 
  % to 'del' as in the case del(a,b,a1..an, -a,-b,-c1, ...-cn) which 
  % can be simplified to del(a1,...an,-c1, ...,-cn)*polynomial in the 
  % space-dimension or a number if N_space=number
  % first arrange each list so that dummy indices are at the beginning 
  % of idv and idc.
    idv:=for each y in idv collect  %au lieu de idvn
                     if null !*id2num y and memq(y,idc) then list('dum,y)
                      else y; 
    idc:=for each y in idc collect 
                     if null !*id2num y and memq(y,car x) then list('dum,y)
                      else y;
    if permp!:(idvn:=ordn idv,idv)=permp!:(idcn:=ordn idc,idc) then bool:=t;
    % the form of these new lists is ((dum a) (dum b) ..ak..) etc ...
   % 1. they contain only  numeric indices:
      if num_indlistp append(idvn,idcn) then 
                       return simpdelnum(idvn,idcn,bool); 
   % 2. some indices are symbolic:
       tot_ind:=length idvn;
   %  dummy indices can be present:
      idv:=splitlist!:(idvn,'dum); % if no dummy indices, it is nil.
       free_ind:=tot_ind - length idv;
    % now search the space in which we are working.  
      dim_space:= if idv then     %% since, may be, no dummy indices
                       if null spaces!* then  dimex!* 
                                else !*k2f space_dim_of_idx cadar idv; 
      for i:=free_ind : (tot_ind -1) do 
              <<spweight:=multf(addf(dim_space,negf !*n2f i),spweight);
                 idvn:=cdr idvn; idcn:=cdr idcn;
              >>; 
       spweight:=!*a2f reval prepf spweight;
      if null idvn then 
          return 
          if bool then spweight 	
           else negf spweight; 
    % left indices can again be all numeric indices
      if num_indlistp append(idvn,idcn) then 
                        return
              multf(spweight,simpdelnum(idvn,idcn,bool));     
    % 3. There is no more internal dummy indices, so  
        return 
%      if !*exdelt then 
%             if bool then 
%           multf(spweight,extract_delt(del,idvn,idcn,1)) 
%              else  negf multf(spweight,extract_delt(del,idvn,idcn,1)) 
%        else
      if !*exdelt then 
             if bool then 
           multf(spweight,extract_delt(del,idvn,idcn,'full)) 
              else negf multf(spweight,extract_delt(del,idvn,idcn,'full))
        else
      if length idvn=1 then 
            if bool then 
            multf(spweight,
                 !*k2f(find_name('delta) . append(lowerind_lst idvn,idcn))) 
             else 
              negf multf(spweight,
                !*k2f(find_name('delta) . append(lowerind_lst idvn,idcn)))
      else 
         if bool then 
           multf(spweight,!*k2f(del . append(lowerind_lst idvn ,idcn)))
          else 
           multf(spweight,negf 
                 !*k2f(del . append(lowerind_lst idvn , idcn)))
 end;

    
symbolic procedure simpdelnum(idvn,idcn,bool); 
% simplification of 'DEL' when all indices are numeric. 
 if idvn=idcn then 
          if bool then 1  
           else   -1
  else 0;

symbolic procedure extract_delt(del,idvn,idcn,depth);
% we  deal with already ordered lists. Numeric indices 
% come first like (!1 !2 a). So, extraction is done from 
% the left because the result simplify more. 
 if length idcn =1 then 
    apply2(function simpdelt,
         get('delta,'name) . lowerind car idvn . car idcn . nil,nil)
  else
      begin scalar uu,x,ind;
         ind:=car idcn;
         idcn:=cdr idcn;
         if depth =1 then  
               for i:=1:length idvn do
               <<x:=multf(exptf(-1,i-1), 
                    multf(apply2(function simpdelt,
                    get('delta,'name) . (ind . list lowerind nth(idvn,i)),nil),
                     !*q2f mksq((if length idvn=2 then get('delta,'name)
                                  else del) . append(idcn,
                                       lowerind_lst  remove(idvn,i)),1)
                          )
                         );
                   uu:=addf(x,uu)
                 >>
              else
             if depth='full then 
                  for i:=1:length idvn do 
                  <<x:= multf(exptf(-1,i-1), 
                       multf(apply2(function simpdelt,
                       get('delta,'name) . (ind . list lowerind nth(idvn,i)),nil),
                       extract_delt(del,remove(idvn,i),idcn,depth)
                            )
                            );
                   uu:=addf(x,uu)
                >>;
       return uu
      end;


symbolic procedure idx_not_member_whosp u;
% u is an index 
(if x then x neq 'wholespace) where x=get(u,'space); 

symbolic procedure ids_not_member_whosp u;
% U is a list of indices.
 if null u then t 
  else 
 if idx_not_member_whosp car u then ids_not_member_whosp cdr u
   else nil;

symbolic procedure simpeta u;
% u is a list {<tensor> indices}
% for instance tt(a b) or tt(a -b) or tt(-a,-b)
% result is the simplified form of the Minkowski metric tensor.
  if (!*onespace and signat!*=0) 
   then msgpri(nil,nil,
           "signature must be defined equal to 1 for ETA tensor",nil,t) 
   else
  if 
   (null !*onespace and null get_sign_space get(car u,'belong_to_space))
     then  
    msgpri(nil,nil,
           "ETA tensor not properly assigned to a space",nil,nil) 
      else
 begin scalar eta,ind,x;
  eta := car u; ind:= cdr u;
  flag(list eta,'symmetric);
  x:=split_cov_cont_ids ind;
  if car x  and  cadr x  then return 
     apply2('simpdelt,find_name('delta) . ind,nil); 
 %  Now BOTH indices are up or down, so  
  x:=if null car x then cadr x else car x;
  if length x neq 2 then 
   rerror(cantens,8, "bad choice of indices for ETA tensor");   
  x:=for each y in x collect !*id2num y;
  return if numlis x then num_eta x
         else 
  if !*onespace then !*k2f(eta . ordn ind)
  else  
  if ids_not_member_whosp {car ind,cadr ind} and 
        get(car ind,'space) neq get(cadr ind,'space) then 0
  else !*k2f(eta . ordn ind)
  end;


symbolic procedure num_eta u;
% u is the list of covariant or contravariant indices of ETA. 
 if car u = cadr u then 
       if car u = 0 then sgn!*
       else  negf sgn!*
 else 0;


symbolic procedure simpepsi u;
% Simplification procedure for the epsilon tensor.
 begin scalar epsi,ind,x,spx,bool;
  epsi := car u; 
  % spx is the space epsi belongs to. 
  % so we can define SEVERAL epsi tensors.
  spx:= get(epsi,'belong_to_space); % In case several spaces are used.  
                                    % otherwise it is nil  
  ind:= cdr u;
  flag(list epsi,'antisymmetric);
  x:=split_cov_cont_ids ind;
  if  null car x then x:='cont . cadr x 
     else 
     if null cadr x then  x:= 'cov . car x 
     else 
   x:= 'mixed . append(car x, cadr x); 
 % If the space has a definite dimension we must take care of the number
 % of indices: 
 (if fixp y and y neq length cdr x then 
   rerror(cantens,9, 
             list("bad number of indices for ", list car u," tensor"))
  )where y= if spx then get_dim_space spx 
              else (if fixp z then z)where z=wholespace_dim '?;
  if repeats x then return 0; 
%  if null !*onespace then one must verify that all 
%  indices belong to the same space as epsi.
   if null !*onespace and spx then 
    if null ind_same_space_tens(cdr u,car u) then 
      rerror(cantens,9, list("some indices are not in the space of",epsi)); 
 return 
  if car x  eq 'mixed or not num_indlistp cdr x then 
   begin scalar xx,xy;
    xx:=ordn ind;
    bool:=permp!:(xx,ind);
    if car x eq 'mixed then
            <<xy:=cont_before_cov ind;
                 if null permp!:(xy,xx) then bool:=not bool>>; 
    return if bool then                                                      
                     !*k2f(epsi . if car x eq 'mixed then 
                                  xy else xx) 
   else negf !*k2f(epsi . if car x eq 'mixed then 
                                  xy else xx)                     
   end          
   else
  % cases where all indices are numeric ones must be handled separately
  % Take the case where either no space is defined or declared. Then 
  % space is euclidean. 
  % look out ! spx is EUCLIDEAN by default. To avoid it, use 
  % 'make_tensor_belong_space'.
  if !*onespace or null spx  then 
          if signat!* =0 then num_epsi_euclid(x)
              else 
          if signat!* =1 then num_epsi_non_euclid (epsi,x)
            else nil
   else
  if  null get_sign_space spx or get_sign_space spx=0 
                                            then  num_epsi_euclid (cdr x)
  else 
  if  get_sign_space spx =1 then num_epsi_non_euclid (epsi,x)
  else
  "undetermined signature or signature bigger then 1";
 end;


symbolic procedure num_epsi_non_euclid(epsi,ind);
% epsi is the name of the epsilon tensor
% ind is the list (cont n1 n2  nk) or (cov n1 n2 .. nk)
% result is either 0 OR +- (epsi 0 1 2 .... k))
% i.e. in terms of contravariant indices.
% So, in case of covariant indices we must take care of the 
% product eta(0,0)*... *eta(spx,spx) and the convention 
% sgn!* enters the game.
 begin scalar x;
 x:=ordn cdr ind;
 return if car ind eq 'cont then 
             (if y then y 
               else  if permp!:(x,cdr ind) then !*k2f(epsi . x)
                        else negf !*k2f(epsi . x))where 
                                             y=!*q2f match_kvalue(epsi,x,nil)  
           else 
           if car ind eq 'cov then 
                 if sgn!* = 1  then 
                      if evenp length cdr x then 
                        (if y then y 
                           else  if permp!:(x,cdr ind) then !*k2f(epsi . x)
                                  else negf !*k2f(epsi . x))where 
                                            y=!*q2f match_kvalue(epsi,x,nil)
                       else 
                       (if y then negf y  
                         else if permp!:(x,cdr ind) then negf !*k2f(epsi . x)
                        else  !*k2f(epsi . x))where  
                                            y=!*q2f match_kvalue(epsi,x,nil)
                  else 
                 if sgn!* =-1 then
                      (if y then negf y 
                       else if permp!:(x,cdr ind) then negf !*k2f(epsi . x)
                              else !*k2f(epsi . x))where 
                                            y=!*q2f match_kvalue(epsi,x,nil)
                 else nil     
           else nil;
 end;

flag({'show_epsilons},'opfn);

symbolic procedure show_epsilons();
(if null x then {'list} 
  else 'list . for each y in x collect 
      list('list,mk!*sq !*k2q car y,mk!*sq !*k2q cdr y))where x=epsilon!*;


symbolic procedure match_kvalue(te,ind,varl);
% te is a tensor, result is nil or a standard form.
% Must return a standard quotient.
(if x then  simp!* cadr x)where  
                          x= if varl then 
                              assoc(te . varl . ind,get(te,'kvalue))
                              else assoc(te . ind,get(te,'kvalue));


symbolic procedure num_epsi_euclid(ind);
% ind is the list (i1, ...,in), therefore
% here epsi(1,2,  n)=1=epsi(-1,-2, ... -n) 
  begin scalar x;
    x:=ordn ind;
  return if permp!:(x,ind) then 1 
          else -1  
  end;


symbolic procedure simpmetric(u,var);
% generic definition of the metric tensor
% covers the possibility of several spaces.
% may depend of any number of variables if needed.
% 'var' is {x1, .. xn}.
% receives an SF and sends back an SQ.
% CORRECTED
 begin scalar g,ind,x;
  if x:=opmtch u then return  simp x;   
   g:=car u; ind:=cdr u;
  flag(list g,'symmetric);
   x:=split_cov_cont_ids ind;
  if car x  and  cadr x  then return 
     apply2('simpdelt,find_name('delta) . ind,nil) ./ 1;
 %  Now BOTH indices are up or down, so  
  x:=if null car x then cadr x else car x;
  if length x neq 2 then 
   rerror(cantens,10, "bad choice of indices for a METRIC tensor");
   % case of numeric indices. 
     x:=for each y in x collect !*id2num y;
   return if numlis x then 
             if !*onespace then 
                if x:= match_kvalue(g,ordn ind,var) then x 
                 else !*k2f(g . if var then var . ordn ind
                                   else ordn ind) ./ 1
             else mult_spaces_num_metric(g,ind,var) ./ 1  
         else 
  if !*onespace then 
      if x:= match_kvalue(g,ordn ind,var) then x  
       else !*k2f(g . if var then var . ordn ind
                        else ordn ind) ./ 1
   else  
  if get(car ind,'space) neq get(cadr ind,'space) then 0
   else 
  if x:= match_kvalue(g,ordn ind,var) then x 
     else !*k2f(g . if var then var . ordn ind
                     else ordn ind) ./ 1
 end;


symbolic procedure mult_spaces_num_metric(g,ind,var);
% g, is the name of the metric tensor 
% ind its numeric indices (both covariant or contravariant)
  begin scalar x,y;
   x:=if pairp car ind then raiseind_lst ind else ind;
   return 
   if numindxl!* and null numids2_belong_same_space(car x,cadr x,g) then  0
    else 
   if y:= match_kvalue(g,if var then var . ordn ind
                                   else ordn ind,var) then y
    else !*k2f(g . if var then var . ordn ind
                     else ordn ind)
  end;

endmodule;

end;


REDUCE Historical
REDUCE Sourceforge Project | Historical SVN Repository | GitHub Mirror | SourceHut Mirror | NotABug Mirror | Chisel Mirror | Chisel RSS ]