<A NAME=pseudo_inverse>
<TITLE>pseudo_inverse</TITLE></A>
<b><a href=r37_idx.html>INDEX</a></b><p><p>
<B>PSEUDO_INVERSE</B> _ _ _ _ _ _ _ _ _ _ _ _ <B>operator</B><P>
<P>
<P>
<P>
<P> <H3>
syntax: </H3>
<em>pseudo_inverse</em>(<matrix>)
<P>
<P>
<P>
<matrix> :- a
<A HREF=r37_0345.html>matrix</A>.
<P>
<P>
<em>pseudo_inverse</em>, also known as the Moore-Penrose inverse,
computes the pseudo inverse of <matrix>.
<P>
<P>
Given the singular value decomposition of <matrix>, i.e:
A = U*P*V^T, then the pseudo inverse A^-1 is defined by
A^-1 = V^T*P^-1*U.
<P>
<P>
Thus <matrix> * pseudo_inverse(A) = Id.
(Id is the identity matrix).
<P>
<P>
<P> <H3>
examples: </H3>
<P><PRE><TT>
R := mat((1,2,3,4),(9,8,7,6));
[1 2 3 4]
r := [ ]
[9 8 7 6]
on rounded;
pseudo_inverse(R);
[ - 0.199999999996 0.100000000013 ]
[ ]
[ - 0.0499999999988 0.0500000000037 ]
[ ]
[ 0.0999999999982 - 5.57825497203e-12]
[ ]
[ 0.249999999995 - 0.0500000000148 ]
</TT></PRE><P>Related functions:
<A HREF=r37_0616.html>svd</A>.
<P>
<P>