<A NAME=hilbertpolynomial>
<TITLE>hilbertpolynomial</TITLE></A>
<b><a href=r37_idx.html>INDEX</a></b><p><p>
<B>HILBERTPOLYNOMIAL</B> _ _ _ _ _ _ _ _ _ _ _ _ <B>operator</B><P>
<P>
<P>
<P>
<P> <H3>
syntax: </H3>
hilbertpolynomial(<bas>)
<P>
<P>
<P>
<P>
where <bas> is a
<A HREF=r37_0382.html>groebner</A> basis in the
current
<A HREF=r37_0353.html>term order</A>.
<P>
<P>
The degree of the <em>Hilbert polynomial</em> is the
dimension of the ideal spanned by the basis. For an
ideal of dimension zero the Hilbert polynomial is a
constant which is the number of common zeros of the
ideal (including eventual multiplicities).
The <em>Hollmann algorithm</em> is used.
<P>
<P>