<A NAME=groebner_walk>
<TITLE>groebner_walk</TITLE></A>
<b><a href=r37_idx.html>INDEX</a></b><p><p>
<B>GROEBNER\_WALK</B> _ _ _ _ _ _ _ _ _ _ _ _ <B>operator</B><P>
<P>
The operator <em>groebner_walk</em> computes a <em>lex</em> basis
from a given <em>graded</em> (or <em>weighted</em>) one.
<P> <H3>
syntax: </H3>
<P>
<P>
<em>groebner_walk</em>(<g>)
<P>
<P>
<P>
where <g> is a <em>graded</em> basis (or <em>weighted</em> basis
with a weight vector with one repeated element) of the polynomial ideal.
<em>Groebner_walk</em> computes a sequence of monomial bases, each
time lifting the full system to a complete basis. <em>Groebner_walk</em>
should be called only in cases, where a normal <em>kex</em> computation
would take too much computer time.
<P>
<P>
The operator
<A HREF=r37_0354.html>torder</A> has to be called before in order to
define the variable sequence and the term order mode of <g>.
<P>
<P>
The variable
<A HREF=r37_0371.html>gvarslast</A> is not set.
<P>
<P>
Do not call <em>groebner_walk</em> with <em>on</em>
<A HREF=r37_0370.html>groebopt</A>.
<P>
<P>
<em>Groebner_walk</em>includes some overhead (such as e. g.
computation with division). On the other hand, sometimes
<em>groebner_walk</em> is faster than a direct <em>lex</em> computation.
<P>
<P>