<A NAME=RESULTANT>
<TITLE>RESULTANT</TITLE></A>
<b><a href=r37_idx.html>INDEX</a></b><p><p>
<B>RESULTANT</B> _ _ _ _ _ _ _ _ _ _ _ _ <B>operator</B><P>
<P>
<P>
<P>
The <em>resultant</em> operator computes the resultant of two polynomials with
respect to a given variable. If the resultant is 0, the polynomials have
a root in common.
<P> <H3>
syntax: </H3>
<P>
<P>
<em>resultant</em>(<expression>,<expression>,<kernel>)
<P>
<P>
<P>
<expression> must be a polynomial containing <kernel> ;
<kernel> must be a
<A HREF=r37_0002.html>kernel</A>.
<P>
<P>
<P> <H3>
examples: </H3>
<P><PRE><TT>
resultant(x**2 + 2*x + 1,x+1,x);
0
resultant(x**2 + 2*x + 1,x-3,x);
16
resultant(z**3 + z**2 + 5*z + 5,
z**4 - 6*z**3 + 16*z**2 - 30*z + 55,
z);
0
resultant(x**3*y + 4*x*y + 10,y**2 + 6*y + 4,y);
6 5 4 3 2
Y + 18*Y + 120*Y + 360*Y + 480*Y + 288*Y + 64
</TT></PRE><P>The resultant is the determinant of the Sylvester matrix, formed f
rom the
coefficients of the two polynomials in the following way:
<P>
<P>
Given two polynomials:
<P>
<P>
<P><PRE><TT>
n n-1
a x + a1 x + ... + an
</TT></PRE><P>and
<P>
<P>
<P><PRE><TT>
m m-1
b x + b1 x + ... + bm
</TT></PRE><P>form the (m+n)x(m+n-1) Sylvester matrix by the following means:
<P>
<P>
<P><PRE><TT>
0.......0 a a1 .......... an
0....0 a a1 .......... an 0
. . . .
a0 a1 .......... an 0.......0
0.......0 b b1 .......... bm
0....0 b b1 .......... bm 0
. . . .
b b1 .......... bm 0.......0
</TT></PRE><P>If the determinant of this matrix is 0, the two polynomials have a
common
root. Finding the resultant of large expressions is time-consuming, due
to the time needed to find a large determinant.
<P>
<P>
The sign conventions <em>resultant</em> uses are those given in the article,
``Computing in Algebraic Extensions,'' by R. Loos, appearing in
<Computer Algebra--Symbolic and Algebraic Computation>, 2nd ed.,
edited by B. Buchberger, G.E. Collins and R. Loos, and published by
Springer-Verlag, 1983.
These are:
<P>
<P>
<P><PRE><TT>
resultant(p(x),q(x),x) = (-1)^{deg p(x)*deg q(x)} * resultant(q(x),p(x),x),
resultant(a,p(x),x) = a^{deg p(x)},
resultant(a,b,x) = 1
</TT></PRE><P>where p(x) and q(x) are polynomials which have x as a variable, an
d
a and b are free of x.
<P>
<P>
Error messages are given if <em>resultant</em> is given a non-polynomial
expression, or a non-kernel variable.
<P>
<P>
<P>