<A NAME=LN>
<TITLE>LN</TITLE></A>
<b><a href=r37_idx.html>INDEX</a></b><p><p>
<B>LN</B> _ _ _ _ _ _ _ _ _ _ _ _ <B>operator</B><P>
<P>
<P>
<P>
<P> <H3>
syntax: </H3>
<em>ln</em>(<expression>)
<P>
<P>
<P>
<expression> can be any valid scalar REDUCE expression.
<P>
<P>
The <em>ln</em> operator returns the natural logarithm of its argument.
However, unlike
<A HREF=r37_0088.html>log</A>, there are no algebraic rules associated
with it; it will only evaluate when
<A HREF=r37_0330.html>rounded</A> is on, and the
argument is a real number.
<P>
<P>
<P> <H3>
examples: </H3>
<P><PRE><TT>
ln(x);
LN(X)
ln 4;
LN(4)
ln(e);
LN(E)
df(ln(x),x);
DF(LN(X),X)
on rounded;
ln 4;
1.38629436112
ln e;
1
</TT></PRE><P>Because of the restricted algebraic properties of <em>ln</em>, use
rs are
advised to use
<A HREF=r37_0088.html>log</A> whenever possible.
<P>
<P>
<P>