<A NAME=svd>
<TITLE>svd</TITLE></A>
<b><a href=r37_idx.html>INDEX</a></b><p><p>
<B>SVD</B> _ _ _ _ _ _ _ _ _ _ _ _ <B>operator</B><P>
<P>
<P>
<P>
Singular value decomposition:
<P>
<P>
<P> <H3>
syntax: </H3>
<em>svd</em>(<matrix>)
<P>
<P>
<P>
<matrix> :- a
<A HREF=r37_0345.html>matrix</A> containing only numeric entries.
<P>
<P>
<em>svd</em>computes the singular value decomposition of <matrix>.
<P>
<P>
It returns
<P>
<P>
{U,P,V}
<P>
<P>
where A = U*P*V^T
<P>
<P>
and P = diag(sigma(1) ... sigma(n)).
<P>
<P>
sigma(i) for i= 1 ... n are the singular values of
<matrix>.
<P>
<P>
n is the column dimension of <matrix>.
<P>
<P>
The singular values of <matrix> are the non-negative square roots
of the eigenvalues of A^T*A.
<P>
<P>
U and V are such that U*U^T = V*V^T = V^T*V = Id.
Id is the identity matrix.
<P>
<P>
<P> <H3>
examples: </H3>
<P><PRE><TT>
Q := mat((1,3),(-4,3));
[1 3]
q := [ ]
[-4 3]
on rounded;
svd(Q);
{
[ 0.289784137735 0.957092029805]
[ ]
[ - 0.957092029805 0.289784137735]
,
[5.1491628629 0 ]
[ ]
[ 0 2.9130948854]
,
[ - 0.687215403194 0.726453707825 ]
[ ]
[ - 0.726453707825 - 0.687215403194]
}
</TT></PRE><P>