<A NAME=LaguerreP>
<TITLE>LaguerreP</TITLE></A>
<b><a href=r37_idx.html>INDEX</a></b><p><p>
<B>LAGUERREP</B> _ _ _ _ _ _ _ _ _ _ _ _ <B>operator</B><P>
<P>
The <em>LaguerreP</em> operator computes the nth Laguerre Polynomial.
The two argument call of LaguerreP is a (common) abbreviation of
LaguerreP(n,0,x).
<P>
<P>
<P> <H3>
syntax: </H3>
<em>LaguerreP</em>(<integer>,<expression>) or
<P>
<P>
<em>LaguerreP</em>(<integer>,<expression>,<expression>)
<P>
<P>
<P>
<P> <H3>
examples: </H3>
<P><PRE><TT>
LaguerreP(3,xx);
3 2
(- xx + 9*xx - 18*xx + 6)/6
LaguerreP(2,3,4);
-2
</TT></PRE><P>Laguerre polynomials are computed using the recurrence relation:
<P>
<P>
LaguerreP(n,a,x) := (2n+a-1-x)/n*LaguerreP(n-1,a,x) -
(n+a-1) * LaguerreP(n-2,a,x) with
<P>
<P>
LaguerreP(0,a,x) := 1 and LaguerreP(2,a,x) := -x+1+a
<P>
<P>
<P>