<A NAME=MATEIGEN>
<TITLE>MATEIGEN</TITLE></A>
<b><a href=r37_idx.html>INDEX</a></b><p><p>
<B>MATEIGEN</B> _ _ _ _ _ _ _ _ _ _ _ _ <B>operator</B><P>
<P>
<P>
<P>
The <em>mateigen</em> operator calculates the eigenvalue equation and the
corresponding eigenvectors of a
<A HREF=r37_0345.html>matrix</A>.
<P> <H3>
syntax: </H3>
<P>
<P>
<em>mateigen</em>(<matrix-id>,<tag-id>)
<P>
<P>
<P>
<matrix-id> must be a declared matrix of values, and <tag-id> must b
e
a legal REDUCE identifier.
<P>
<P>
<P> <H3>
examples: </H3>
<P><PRE><TT>
aa := mat((2,5),(1,0))$
mateigen(aa,alpha);
2
{{ALPHA - 2*ALPHA - 5,
1,
5*ARBCOMPLEX(1)
MAT(1,1) := ---------------,
ALPHA - 2
MAT(2,1) := ARBCOMPLEX(1)
}}
charpoly := first first ws;
2
CHARPOLY := ALPHA - 2*ALPHA - 5
bb := mat((1,0,1),(1,1,0),(0,0,1))$
mateigen(bb,lamb);
{{LAMB - 1,3,
[ 0 ]
[ARBCOMPLEX(2)]
[ 0 ]
}}
</TT></PRE><P>The <em>mateigen</em> operator returns a list of lists of three
elements. The first element is a square free factor of the characteristic
polynomial; the second element is its multiplicity; and the third element
is the corresponding eigenvector. If the characteristic polynomial can be
completely factored, the product of the first elements of all the sublists
will produce the minimal polynomial. You can access the various parts of
the answer with the usual list access operators.
<P>
<P>
If the matrix is degenerate, more than one eigenvector can be produced for
the same eigenvalue, as shown by more than one arbitrary variable in the
eigenvector. The identification numbers of the arbitrary complex variables
shown in the examples above may not be the same as yours. Note that since
<em>lambda</em> is a reserved word in REDUCE, you cannot use it as a
tag-id for this operator.
<P>
<P>
<P>