<A NAME=DEPEND>
<TITLE>DEPEND</TITLE></A>
<b><a href=r37_idx.html>INDEX</a></b><p><p>
<B>DEPEND</B> _ _ _ _ _ _ _ _ _ _ _ _ <B>declaration</B><P>
<P>
<P>
<P>
<em>depend</em>declares that its first argument depends on the rest of its
arguments.
<P>
<P>
<P> <H3>
syntax: </H3>
<em>depend</em><kernel>{<em>,</em><kernel>}+
<P>
<P>
<P>
<kernel> must be a legal variable name or a prefix operator (see
<A HREF=r37_0002.html>kernel</A>).
<P>
<P>
<P> <H3>
examples: </H3>
<P><PRE><TT>
depend y,x;
df(y**2,x);
2*DF(Y,X)*Y
depend z,cos(x),y;
df(sin(z),cos(x));
COS(Z)*DF(Z,COS(X))
df(z**2,x);
2*DF(Z,X)*Z
nodepend z,y;
df(z**2,x);
2*DF(Z,X)*Z
cc := df(y**2,x);
CC := 2*DF(Y,X)*Y
y := tan x;
Y := TAN(X);
cc;
2
2*TAN(X)*(TAN(X) + 1)
</TT></PRE><P>Dependencies can be removed by using the declaration
<A HREF=r37_0204.html>nodepend</A>.
The differentiation operator uses this information, as shown in the
examples above. Linear operators also use knowledge of dependencies
(see
<A HREF=r37_0200.html>linear</A>). Note that dependencies can be nested: Having
declared y to depend on x, and z
to depend on y, we
see that the chain rule was applied to the derivative of a function of
z with respect to x. If the explicit function of the
dependency is later entered into the system, terms with <em>DF(Y,X)</em>,
for example, are expanded when they are displayed again, as shown in the
last example. The boolean operator
<A HREF=r37_0113.html>freeof</A> allows you to
check the dependency between two algebraic objects.
<P>
<P>
<P>