<A NAME=INT>
<TITLE>INT</TITLE></A>
<b><a href=r37_idx.html>INDEX</a></b><p><p>
<B>INT</B> _ _ _ _ _ _ _ _ _ _ _ _ <B>operator</B><P>
<P>
<P>
<P>
The <em>int</em> operator performs analytic integration on a variety of
functions.
<P>
<P>
<P> <H3>
syntax: </H3>
<em>int</em>(<expression>,<kernel>)
<P>
<P>
<P>
<expression> can be any scalar expression. involving polynomials, log
functions, exponential functions, or tangent or arctangent expressions.
<em>int</em> attempts expressions involving error functions, dilogarithms
and other trigonometric expressions. Integrals involving algebraic
extensions (such as square roots) may not succeed. <kernel> must be a
REDUCE
<A HREF=r37_0002.html>kernel</A>.
<P>
<P>
<P> <H3>
examples: </H3>
<P><PRE><TT>
int(x**3 + 3,x);
3
X*(X + 12)
-----------
4
int(sin(x)*exp(2*x),x);
2*X
E *(COS(X) - 2*SIN(X))
- ------------------------
5
int(1/(x^2-2),x);
SQRT(2)*(LOG( - SQRT(2) + X) - LOG(SQRT(2) + X))
------------------------------------------------
4
int(sin(x)/(4 + cos(x)**2),x);
COS(X)
ATAN(------)
2
- ------------
2
int(1/sqrt(x^2-x),x);
SQRT(X)*SQRT(X - 1)
INT(-------------------,X)
2
X -X
</TT></PRE><P>Note that REDUCE couldn't handle the last integral with its defaul
t
integrator, since the integrand involves a square root. However,
the integral can be found using the
<A HREF=r37_0265.html>algint</A> package.
Alternatively, you could add a rule using the
<A HREF=r37_0199.html>let</A> statement
to evaluate this integral.
<P>
<P>
The arbitrary constant of integration is not shown. Definite integrals can
be found by evaluating the result at the limits of integration (use
<A HREF=r37_0330.html>rounded</A>) and subtracting the lower from the higher. Ev
aluation can
be easily done by the
<A HREF=r37_0182.html>sub</A> operator.
<P>
<P>
When <em>int</em> cannot find an integral it returns an expression
involving formal <em>int</em> expressions unless the switch
<A HREF=r37_0288.html>failhard</A> has been set. If not all of the expression
can be integrated, the switch
<A HREF=r37_0311.html>nolnr</A> controls whether a partially
integrated result should be returned or not.
<P>
<P>
<P>
<P>