/* arith.h Copyright (C) Codemist Ltd, 1990-2002 */
/*
* This code may be used and modified, and redistributed in binary
* or source form, subject to the "CCL Public License", which should
* accompany it. This license is a variant on the BSD license, and thus
* permits use of code derived from this in either open and commercial
* projects: but it does require that updates to this code be made
* available back to the originators of the package.
* Before merging other code in with this or linking this code
* with other packages or libraries please check that the license terms
* of the other material are compatible with those of this.
*/
/* Signature: 236e0fe6 08-Apr-2002 */
#ifndef header_arith_h
#define header_arith_h 1
#define TWO_32 4294967296.0 /* 2^32 */
#define TWO_31 2147483648.0 /* 2^31 */
#define TWO_24 16777216.0 /* 2^24 */
#define TWO_22 4194304.0 /* 2^22 */
#define TWO_21 2097152.0 /* 2^21 */
#define TWO_20 1048576.0 /* 2^20 */
#define M2_31_1 -2147483649.0 /* -(2^31 + 1) */
#define _pi 3.14159265358979323846
#define _half_pi 1.57079632679489661923
#define boole_clr 0
#define boole_and 1
#define boole_andc2 2
#define boole_1 3
#define boole_andc1 4
#define boole_2 5
#define boole_xor 6
#define boole_ior 7
#define boole_nor 8
#define boole_eqv 9
#define boole_c2 10
#define boole_orc2 11
#define boole_c1 12
#define boole_orc1 13
#define boole_nand 14
#define boole_set 15
/*
* Bignums are represented as vectors of digits, where each digit
* uses 31 bits, and all but the most significant digit are unsigned
* (and thus do not use the 0x80000000L bit). The most significant
* digit of a bignum is a signed 2-s complement value in 31 bits that
* has been sign extended into the 0x80000000L bit, and thus its top
* two bits (in the 32 bit word) will be either '00' or '11'.
* NOTE that even on a 64-bit machine I will work with 32-bit values
* as digits in bignums.
*/
#define top_bit_set(n) (((int32)(n)) < 0)
#define top_bit(n) (((unsigned32)(n)) >> 31)
#define set_top_bit(n) ((n) | (unsigned32)0x80000000)
#define clear_top_bit(n) ((n) & 0x7fffffff)
#define signed_overflow(n) top_bit_set((n) ^ (((int32)(n))<<1))
#ifdef MULDIV64
/*
* Here I do some arithmetic in-line. In the following macros I need to
* take care that the names used for local variables do not clash with
* those used in the body of the code. Hence the names r64 and c64, which
* I must agree not to use elsewhere. Note also the "do {} while (0)" idiom
* to avoid nasty problems with C syntax and the need for semicolons.
*/
#define IMULTIPLY 1 /* External function not needed */
#define Dmultiply(hi, lo, a, b, c) \
do { unsigned64 r64 = (unsigned64)(a) * (unsigned64)(b) + \
(unsigned32)(c); \
(lo) = 0x7fffffffu & (unsigned32)r64; \
(hi) = (unsigned32)(r64 >> 31); } while (0)
#define IDIVIDE 1
#define Ddivide(r, q, a, b, c) \
do { unsigned64 r64 = (((unsigned64)(a)) << 31) | (unsigned64)(b); \
unsigned64 c64 = (unsigned64)(unsigned32)(c); \
q = (unsigned32)(r64 / c64); \
r = (unsigned32)(r64 % c64); } while (0)
#define Ddiv10_9(r, q, a, b) Ddivide(r, q, a, b, 1000000000u)
#else
#define Dmultiply(hi, lo, a, b, c) ((hi) = Imultiply(&(lo), (a), (b), (c)))
#define Ddivide(r, q, a, b, c) ((r) = Idivide(&(q), (a), (b), (c)))
#define Ddiv10_9(r, q, a, b) ((r) = Idiv10_9(&(q), (a), (b)))
#endif
#define fix_mask (-0x08000000)
#define fixnum_minusp(a) ((int32)(a) < 0)
#define bignum_minusp(a) \
((int32)bignum_digits(a)[((bignum_length(a)-CELL)/4)-1]<0)
extern Lisp_Object negateb(Lisp_Object);
extern Lisp_Object copyb(Lisp_Object);
extern Lisp_Object negate(Lisp_Object);
extern Lisp_Object plus2(Lisp_Object a, Lisp_Object b);
extern Lisp_Object difference2(Lisp_Object a, Lisp_Object b);
extern Lisp_Object times2(Lisp_Object a, Lisp_Object b);
extern Lisp_Object quot2(Lisp_Object a, Lisp_Object b);
extern Lisp_Object CLquot2(Lisp_Object a, Lisp_Object b);
extern Lisp_Object quotbn(Lisp_Object a, int32 n);
extern Lisp_Object quotbn1(Lisp_Object a, int32 n);
extern Lisp_Object quotbb(Lisp_Object a, Lisp_Object b);
extern Lisp_Object Cremainder(Lisp_Object a, Lisp_Object b);
extern Lisp_Object rembi(Lisp_Object a, Lisp_Object b);
extern Lisp_Object rembb(Lisp_Object a, Lisp_Object b);
extern Lisp_Object shrink_bignum(Lisp_Object a, int32 lena);
extern Lisp_Object modulus(Lisp_Object a, Lisp_Object b);
extern Lisp_Object rational(Lisp_Object a);
extern Lisp_Object rationalize(Lisp_Object a);
extern Lisp_Object lcm(Lisp_Object a, Lisp_Object b);
extern Lisp_Object lengthen_by_one_bit(Lisp_Object a, int32 msd);
extern CSLbool numeq2(Lisp_Object a, Lisp_Object b);
extern CSLbool zerop(Lisp_Object a);
extern CSLbool onep(Lisp_Object a);
extern CSLbool minusp(Lisp_Object a);
extern CSLbool plusp(Lisp_Object a);
extern CSLbool lesspbd(Lisp_Object a, double b);
extern CSLbool lessprd(Lisp_Object a, double b);
extern CSLbool lesspdb(double a, Lisp_Object b);
extern CSLbool lesspdr(double a, Lisp_Object b);
extern Lisp_Object make_one_word_bignum(int32 n);
extern Lisp_Object make_two_word_bignum(int32 a, unsigned32 b);
extern Lisp_Object make_n_word_bignum(int32 a1, unsigned32 a2,
unsigned32 a3, int32 n);
extern Lisp_Object make_sfloat(double d);
extern double float_of_integer(Lisp_Object a);
extern Lisp_Object add1(Lisp_Object p);
extern Lisp_Object sub1(Lisp_Object p);
extern Lisp_Object integerp(Lisp_Object p);
extern double float_of_number(Lisp_Object a);
extern Lisp_Object make_boxfloat(double a, int32 type);
extern Lisp_Object make_complex(Lisp_Object r, Lisp_Object i);
extern Lisp_Object make_ratio(Lisp_Object p, Lisp_Object q);
extern Lisp_Object ash(Lisp_Object a, Lisp_Object b);
extern Lisp_Object lognot(Lisp_Object a);
extern Lisp_Object logior2(Lisp_Object a, Lisp_Object b);
extern Lisp_Object logxor2(Lisp_Object a, Lisp_Object b);
extern Lisp_Object logand2(Lisp_Object a, Lisp_Object b);
extern Lisp_Object logeqv2(Lisp_Object a, Lisp_Object b);
extern Lisp_Object rationalf(double d);
extern int _reduced_exp(double, double *);
extern CSLbool lesspbi(Lisp_Object a, Lisp_Object b);
extern CSLbool lesspib(Lisp_Object a, Lisp_Object b);
#ifdef COMMON
typedef struct Complex
{
double real;
double imag;
} Complex;
extern Complex MS_CDECL Cln(Complex a);
extern Complex MS_CDECL Ccos(Complex a);
extern Complex MS_CDECL Cexp(Complex a);
extern Complex MS_CDECL Cpow(Complex a, Complex b);
extern double MS_CDECL Cabs(Complex a);
#endif
#endif /* header_arith_h */
/* end of arith.h */