Tue Jun 8 03:51:33 MET DST 1999
REDUCE 3.7, 15-Apr-1999 ...
1: 1:
2: 2: 2: 2: 2: 2: 2: 2: 2:
3: 3: % Examples for the algorithmic calculation of formal
% Puiseux, Laurent and power series,
%
% Wolfram Koepf, Freie Universitaet Berlin, Germany
% (taken from the original paper and adapted to REDUCE
% form by Winfried Neun, ZIB Berlin)
% Formal Laurent series
fps(E^x,x);
k
x
infsum(--------------,k,0,infinity)
factorial(k)
fps(E^x/(x^3),x);
k
x
infsum(-----------------,k,0,infinity)
3
factorial(k)*x
fps(x * e^(x^4),x);
4*k
x *x
infsum(--------------,k,0,infinity)
factorial(k)
fps(sin (x + y),x);
2*k k
x *( - 1) *cos(y)*x
infsum(-----------------------,k,0,infinity)
factorial(2*k + 1)
2*k k
x *( - 1) *sin(y)
+ infsum(---------------------,k,0,infinity)
factorial(2*k)
simplede (sin x,x);
df(y,x,2) + y
%find a DE for sin
simplede (sin (x)^2,x,w);
df(w,x,3) + 4*df(w,x)
% DE in w and x
fps(asin x,x);
2*k
x *factorial(2*k)*x
infsum(------------------------------,k,0,infinity)
2*k 2
2 *factorial(k) *(2*k + 1)
fps((asin x)^2,x);
2*k 2*k 2 2
x *2 *factorial(k) *x
infsum(----------------------------,k,0,infinity)
factorial(2*k + 1)*(k + 1)
fps(e^(asin x),x);
2*k k 2
x *2 *prod(2*j - 2*j + 1,j,1,k)*x
infsum(--------------------------------------,k,0,infinity)
factorial(2*k + 1)
2*k 2
x *prod(4*j - 8*j + 5,j,1,k)
+ infsum(---------------------------------,k,0,infinity)
factorial(2*k)
fps(e^(asinh x),x);
2*k k
- x *( - 1) *factorial(2*k)
infsum(--------------------------------,k,0,infinity) + x
k 2
4 *factorial(k) *(2*k - 1)
fps((x + sqrt(1+x^2))^A,x);
2*k k 2*k - a a
x *( - 1) *2 *pochhammer(------,k)*pochhammer(---,k)
2 2
infsum(----------------------------------------------------------,k,0,infinity)
factorial(2*k)
2*k k 2*k - a + 1 a + 1
x *( - 1) *2 *pochhammer(----------,k)*pochhammer(-------,k)*a*x
2 2
+ infsum(----------------------------------------------------------------------,
factorial(2*k + 1)
k,0,infinity)
fps(e^(x^2)*erf x,x);
2*k 2*k
2*x *sqrt(pi)*2 *factorial(k)*x
infsum(-------------------------------------,k,0,infinity)
factorial(2*k + 1)*pi
fps(e^x - 2 e^(-x/2) * cos(sqrt(3) * x/2 -pi/3),x);
3*k 2
9*x *x *(k + 1)
infsum(--------------------,k,0,infinity)
factorial(3*k + 3)
% fps(int(e^(-a^2*t^2) * cos(2*x*t),t,0,infinity),x) % not yet
% fps(4/x * int(e^(t^2)*erf(t),t,0,sqrt(x)/2),x);
fps(sin x * e^x,x);
k k/2 k*pi
x *2 *sin(------)
4
infsum(---------------------,k,0,infinity)
factorial(k)
fps(cos x * e^(2*x),x);
k k/2 1
x *5 *cos(atan(---)*k)
2
infsum(--------------------------,k,0,infinity)
factorial(k)
fps(1/(x-x^3),x);
k k k
x *( - 1) - x
infsum(-----------------,k,0,infinity)*x + 1
k
2*( - 1)
----------------------------------------------
x
fps(1/(x^2 + 3 x + 2),x);
k k k
2*x *2 - x
infsum(--------------,k,0,infinity)
k k
2*( - 1) *2
fps(x/(1-x-x^2),x);
x
fps(--------------,x,0)
2
(1 - x) - x
% Logarithmic singularities and Puisieux series
fps(sin sqrt x,x);
(2*k + 1)/2 k
x *( - 1)
infsum(----------------------,k,0,infinity)
factorial(2*k + 1)
fps(((1 + sqrt x)/x)^(1/3),x);
(6*k + 1)/6 2
x *pochhammer(---,2*k)
3
infsum(----------------------------------,k,0,infinity)
3*factorial(2*k + 1)
k - 1
x *pochhammer(------,2*k)
3
+ infsum(---------------------------,k,0,infinity)
1/3
x *factorial(2*k)
fps(asech x,x);
% some more (Wolfram Koepf, priv. comm.)
fps((1+x)^alpha,x);
k k
x *( - 1) *pochhammer( - alpha,k)
infsum(-----------------------------------,k,0,infinity)
factorial(k)
fps((1+sqrt(1+x))^beta,x);
k k beta
x *( - 1) *2 *pochhammer( - beta,2*k)
infsum(---------------------------------------------,k,0,infinity)
2*k
2 *factorial(k)*pochhammer( - beta + 1,k)
fps(sin(x)^2+cos(x)^2,x);
1
fps(sin(x)^2*cos(x)^2,x);
2*k k 4*k 2
x *( - 1) *2 *x
infsum(----------------------------,k,0,infinity)
factorial(2*k + 1)*(k + 1)
fps(sin(x)*cos(x^2),x);
2
fps(sin(x)*cos(x ),x,0)
fps((x-1)^(-1),x);
k
infsum( - x ,k,0,infinity)
fps(atan(x+y),x);
fps(atan(x + y),x,0)
fps((1-x^5)^6,x);
30 25 20 15 10 5
x - 6*x + 15*x - 20*x + 15*x - 6*x + 1
fps(asec x,x);
fps(besseli(0,x),x);
2*k
x
infsum(--------------------,k,0,infinity)
2*k 2
2 *factorial(k)
fps(besseli(1,x),x);
2*k
x *x
infsum(--------------------------------------,k,0,infinity)
2*k
2*2 *factorial(k + 1)*factorial(k)
fps(exp(x^(1/3)),x);
(3*k + 1)/3
x
infsum(--------------------,k,0,infinity)
factorial(3*k + 1)
k
x
+ infsum(----------------,k,0,infinity)
factorial(3*k)
(3*k + 2)/3
3*x *(k + 1)
+ infsum(------------------------,k,0,infinity)
factorial(3*k + 3)
fps(log(1-x),x);
k
- x *x
infsum(---------,k,0,infinity)
k + 1
fps(exp x*sinh x,x);
k k
x *2 *x
infsum(------------------,k,0,infinity)
factorial(k + 1)
fps(atan x,x);
2*k k
x *( - 1) *x
infsum(----------------,k,0,infinity)
2*k + 1
fps(sin x+sinh x,x);
4*k
2*x *x
infsum(--------------------,k,0,infinity)
factorial(4*k + 1)
fps(sin x*sinh x,x);
4*k k 2*k 2
x *( - 1) *2 *x
infsum(------------------------------,k,0,infinity)
factorial(4*k + 1)*(2*k + 1)
fps(int(erf(x),x),x);
*** ci already defined as operator
*** si already defined as operator
2*k k
- x *sqrt(pi)*( - 1)
infsum(---------------------------,k,0,infinity)
factorial(k)*pi*(2*k - 1)
fps(sqrt(2-x),x);
k
- x *sqrt(2)*factorial(2*k)
infsum(------------------------------,k,0,infinity)
k 2
8 *factorial(k) *(2*k - 1)
fps(sqrt(1+x)+sqrt(1-x),x);
2*k
- 2*x *factorial(4*k)
infsum(--------------------------------,k,0,infinity)
2*k 2
4 *factorial(2*k) *(4*k - 1)
fps(exp(a+b*x)*exp(c+d*x),x);
k a + c k
x *e *(b + d)
infsum(--------------------,k,0,infinity)
factorial(k)
fps(1/cos(asin x),x);
2*k
x *factorial(2*k)
infsum(---------------------,k,0,infinity)
2*k 2
2 *factorial(k)
fps(sqrt(1-x^2)+x*asin x,x);
2*k
x *factorial(2*k)
infsum(-----------------------------------,k,0,infinity)
k 2 2
4 *factorial(k) *(4*k - 4*k + 1)
fps(sqrt(1-sqrt(x)),x);
(2*k + 1)/2
- x *factorial(4*k)
infsum(------------------------------------------,k,0,infinity)
4*k
2*2 *factorial(2*k + 1)*factorial(2*k)
k
- x *factorial(4*k)
+ infsum(--------------------------------,k,0,infinity)
2*k 2
4 *factorial(2*k) *(4*k - 1)
fps(cos(n*acos x),x);
2*k 2*k n*pi - n n
x *2 *cos(------)*pochhammer(------,k)*pochhammer(---,k)
2 2 2
infsum(--------------------------------------------------------------,k,0,
factorial(2*k)
infinity) + infsum(
2*k 2*k - n + 1 n + 1 n*pi
x *2 *pochhammer(----------,k)*pochhammer(-------,k)*sin(------)*n*x
2 2 2
--------------------------------------------------------------------------,k,
factorial(2*k + 1)
0,infinity)
fps(cos x+I*sin x,x);
k k
x *i
infsum(--------------,k,0,infinity)
factorial(k)
fps(cos(3*asinh x),x);
2*k k 2
x *( - 1) *prod(4*j - 8*j + 13,j,1,k)
infsum(------------------------------------------,k,0,infinity)
factorial(2*k)
fps(cos(n*asinh x),x);
2*k k 2*k - i*n i*n
x *( - 1) *2 *pochhammer(--------,k)*pochhammer(-----,k)
2 2
infsum(--------------------------------------------------------------,k,0,
factorial(2*k)
infinity)
fps(sin(n*log(x+sqrt(1+x^2))),x);
2*k k 2*k - i*n + 1 i*n + 1
infsum((x *( - 1) *2 *pochhammer(------------,k)*pochhammer(---------,k)*n*x
2 2
)/factorial(2*k + 1),k,0,infinity)
fps(sqrt(1+x^2)*asinh x-x,x);
2*k k 2*k 3
2*x *( - 1) *2 *factorial(k + 1)*factorial(k)*x
infsum(------------------------------------------------------,k,0,infinity)
factorial(2*k + 3)
fps(int(erf(x)/x,x),x);
2*k k
2*x *sqrt(pi)*( - 1) *x
infsum(----------------------------------,k,0,infinity)
2
factorial(k)*pi*(4*k + 4*k + 1)
erf(x)
+ sub(x=0,int(--------,x))
x
fps(asin(x)^2/x^4,x);
2*k 2*k 2
x *2 *factorial(k)
infsum(-------------------------------,k,0,infinity)
2
factorial(2*k + 1)*x *(k + 1)
% we had problems here:
fps(cos(asin x),x);
2*k
- x *factorial(2*k)
infsum(----------------------------,k,0,infinity)
k 2
4 *factorial(k) *(2*k - 1)
fps(sinh(log x),x);
fps(sinh(log(x)),x,0)
fps(atan(cot x),x);
Could not find the limit of: atan(cot(x)),x,0
% we can cure this one by defining the limit:
let limit(atan(cot ~x),x,0) => pi/2;
fps(atan(cot x),x);
pi - 2*x
----------
2
fps(exp(nnn*x)*cos(mmm*x),x);
k 2 2
infsum((x *((impart(mmm) + 2*impart(mmm)*repart(nnn) + impart(nnn)
2 2 k
- 2*impart(nnn)*repart(mmm) + repart(mmm) + repart(nnn) )**---
2
impart(nnn) - repart(mmm) 2
*cos(atan(---------------------------)*k) + (impart(mmm)
impart(mmm) + repart(nnn)
2
- 2*impart(mmm)*repart(nnn) + impart(nnn)
2 2 k
+ 2*impart(nnn)*repart(mmm) + repart(mmm) + repart(nnn) )**---
2
impart(nnn) + repart(mmm) 2
*cos(atan(---------------------------)*k) - (impart(mmm)
impart(mmm) - repart(nnn)
2
- 2*impart(mmm)*repart(nnn) + impart(nnn)
2 2 k
+ 2*impart(nnn)*repart(mmm) + repart(mmm) + repart(nnn) )**---
2
impart(nnn) + repart(mmm) 2
*sin(atan(---------------------------)*k)*i + (impart(mmm)
impart(mmm) - repart(nnn)
2
+ 2*impart(mmm)*repart(nnn) + impart(nnn)
2 2 k
- 2*impart(nnn)*repart(mmm) + repart(mmm) + repart(nnn) )**---
2
impart(nnn) - repart(mmm)
*sin(atan(---------------------------)*k)*i))/(2*factorial(k)),k,0,
impart(mmm) + repart(nnn)
infinity)
fps(sqrt(2-x^2),x);
2*k
- 2*x *factorial(2*k)
infsum(------------------------------------,k,0,infinity)
k 2
sqrt(2)*8 *factorial(k) *(2*k - 1)
fps(ci x,x);
2*k k
x *( - 1) *infinity*x
ci(0) + infsum(------------------------------,k,0,infinity)
factorial(2*k + 1)*(2*k + 1)
fps(log(1-2*x*y+x^2),x);
2
fps(log(1 - 2*x*y + x ),x,0)
FPS(sin x,x,pi);
2*k k
( - pi + x) *( - 1) *( - pi + x)
infsum(------------------------------------,k,0,infinity)
factorial(2*k + 1)
% This one takes ages :
%fps(acos(cos(x)),x);
fps_search_depth := 7;
fps_search_depth := 7
% does not find aa DE with the default
fps(sin(x^(1/3)),x);
2*k k k k
infsum(( - x *( - 1) *108 *factorial(k)*x)/(6*46656 *factorial(3*k + 1)
7 5
*factorial(2*k + 1)*pochhammer(---,k)*pochhammer(---,k)),k,0,infinity)
6 6
(6*k + 2)/3 k 2*k 3*k k
+ infsum((x *( - 1) *2 *3 *factorial(k + 1)*x)/(20*46656
11
*factorial(3*k + 3)*factorial(2*k + 1)*pochhammer(----,k)
6
7
*pochhammer(---,k)),k,0,infinity) + infsum(
6
(6*k + 1)/3 k 2*k 3*k
x *( - 1) *2 *3 *factorial(k)
--------------------------------------------------------------------------,k,
k 7 5
46656 *factorial(3*k)*factorial(2*k)*pochhammer(---,k)*pochhammer(---,k)
6 6
0,infinity)
end;
4: 4: 4: 4: 4: 4: 4: 4: 4:
Time for test: 77140 ms, plus GC time: 4440 ms
5: 5:
Quitting
Tue Jun 8 03:52:56 MET DST 1999