module kredelw; % Kredel Weispfenning algorithm.
% Author: H.Melenk (ZIB Berlin)
fluid '(vdpsortmode!* !*groebopt !*gsugar);
symbolic procedure gdimension_eval u;
begin integer n,m;
for each s in cdr gindependent_seteval u
do if (m:=length cdr s)>n then n:=m;
return n;
end;
put('gdimension,'psopfn,'gdimension_eval);
symbolic procedure gindependent_seteval pars;
% Independent set algorithm (Kredel/Weispfenning).
% parameters:
% 1 Groebner basis
% 2 optional: list of variables
begin scalar vars,u,v,w,oldorder,!*factor,!*exp,!*gsugar,
!*groebopt;
!*exp := t;
u := reval car pars;
v := if cdr pars then reval cadr pars else nil;
w := for each j in groerevlist u
collect if eqexpr j then !*eqn2a j else j;
if null w then rerror(groebnr2,3,"Empty list");
vars := if null v then
for each j in gvarlis w collect !*a2k j
else groerevlist v;
if not vars then return '(list);
oldorder := vdpinit vars;
w:=for each j in w collect vdpevlmon a2vdp j;
vars:=for each y in vars collect y.vdpevlmon a2vdp y;
w:=groebkwprec(vars,nil,w,nil);
return 'list. for each s in w collect
'list. reversip for each x in s collect car x;
end;
put('gindependent_sets,'psopfn,'gindependent_seteval);
symbolic procedure groebkwprec(vars,s,lt,m);
% recursive Kredel Weispfennig algorithm.
% vars: unprocessed variables,
% s: current subset of s,
% lt: leading term basis,
% m: collection of independent sets so far.
% returns: updated m.
begin scalar x,s1,bool;
s1:=for each y in s collect cdr y;
while vars do
<<x:=car vars; vars:= cdr vars;
if groebkwprec1(cdr x.s1,lt) then
m:=groebkwprec(vars,x.s,lt,m);
>>;
bool:=t;
for each y in m do % bool and not subsetp(s,y);
bool:=bool and not(length s=length intersection(s,y));
return if bool then s.m else m;
end;
symbolic procedure groebkwprec1(s,lt);
% t if intersection of T(s) and lt is empty.
if null lt then t else
groebkwprec2(s,car lt) and groebkwprec1(s,cdr lt);
symbolic procedure groebkwprec2(s,mon);
% t if monomial not in T(s).
<<for each m in s do mon:=vevcan0(m,mon);
not vevzero!? mon>>;
symbolic procedure vevcan0(m,mon);
% divide multiples of m1 out of mon.
if vevzero!? m then mon else
if vevzero!? mon then nil else
(if car m neq 0 then 0 else car mon).vevcan0(cdr m,cdr mon);
endmodule;
end;