File r37/log/assist.rlg artifact 1fad625694 part of check-in d58ccc1261


Sun Aug 18 16:14:14 2002 run on Windows
% Test of Assist Package version 2.31.
% DATE : 30 August 1996
% Author: H. Caprasse <hubert.caprasse@ulg.ac.be>
%load_package assist$

Comment 2. HELP for ASSIST:;

;


assist();


 Argument of ASSISTHELP must be an integer between 3 and 14. 

 Each integer corresponds to a section number in the documentation:

 3: switches    4: lists        5: bags      6: sets 

 7: utilities   8: properties and flags  9: control functions 

 10: handling of polynomials 

 11: handling of transcendental functions

 12: handling of n-dimensional vectors 

 13: grassmann variables           14: matrices

;


assisthelp(7);


{{mkidnew,list_to_ids,oddp,followline,detidnum,dellastdigit,==},

 {randomlist,mkrandtabl},

 {permutations,perm_to_num,num_to_perm,combnum,combinations,cyclicpermlist,

  symmetrize,remsym},

 {extremum,sortnumlist,sortlist,algsort},

 {funcvar,implicit,depatom,explicit,simplify,korderlist,remcom},

 {checkproplist,extractlist,array_to_list,list_to_array},

 {remvector,remindex,mkgam}}

;


Comment 3. CONTROL OF SWITCHES:;

;


switches;


      **** exp:=t .................... allfac:= t ****

      **** ezgcd:=nil ................. gcd:= nil ****

      **** mcd:=t ....................... lcm:= t ****

      **** div:=nil ................... rat:= nil ****

      **** intstr:=nil ........... rational:= nil ****

      **** precise:=t ............. reduced:= nil ****

      **** complex:=nil ....... rationalize:= nil ****

      **** factor:= nil ....... combineexpt:= nil ****

      **** revpri:= nil ........ distribute:= nil ****
off exp;

 on gcd;

 off precise;


switches;


      **** exp:=nil .................... allfac:= t ****

      **** ezgcd:=nil ................. gcd:= t ****

      **** mcd:=t ....................... lcm:= t ****

      **** div:=nil ................... rat:= nil ****

      **** intstr:=nil ........... rational:= nil ****

      **** precise:=nil ............. reduced:= nil ****

      **** complex:=nil ....... rationalize:= nil ****

      **** factor:= nil ....... combineexpt:= nil ****

      **** revpri:= nil ........ distribute:= nil ****
switchorg;


switches;


      **** exp:=t .................... allfac:= t ****

      **** ezgcd:=nil ................. gcd:= nil ****

      **** mcd:=t ....................... lcm:= t ****

      **** div:=nil ................... rat:= nil ****

      **** intstr:=nil ........... rational:= nil ****

      **** precise:=t ............. reduced:= nil ****

      **** complex:=nil ....... rationalize:= nil ****

      **** factor:= nil ....... combineexpt:= nil ****

      **** revpri:= nil ........ distribute:= nil ****
;


if !*mcd then "the switch mcd is on";


the switch mcd is on

if !*gcd then "the switch gcd is on";


;


Comment 4. MANIPULATION OF THE LIST STRUCTURE:;

;


t1:=mklist(5);


t1 := {0,0,0,0,0}


Comment   MKLIST does NEVER destroy anything ;


mklist(t1,10);


{0,0,0,0,0,0,0,0,0,0}

mklist(t1,3);


{0,0,0,0,0}

;


sequences 3;


{{0,0,0},

 {1,0,0},

 {0,1,0},

 {1,1,0},

 {0,0,1},

 {1,0,1},

 {0,1,1},

 {1,1,1}}

lisp;


nil

sequences 3;


((0 0 0) (1 0 0) (0 1 0) (1 1 0) (0 0 1) (1 0 1) (0 1 1) (1 1 1))

algebraic;


;


for i:=1:5 do t1:= (t1.i:=mkid(a,i));


t1;


{a1,

 a2,

 a3,

 a4,

 a5}

;


t1.5;


a5

;


t1:=(t1.3).t1;


t1 := {a3,a1,a2,a3,a4,a5}

;


% Notice the blank spaces ! in the following illustration: 
1 . t1;


{1,a3,a1,a2,a3,a4,a5}

;


% Splitting of a list:
split(t1,{1,2,3});


{{a3},

 {a1,a2},

 {a3,a4,a5}}
 
;


% It truncates the list :
split(t1,{3});


{{a3,a1,a2}}

;


% A KERNEL may be coerced to a list:
kernlist sin x;


{x}

;


% algnlist constructs a list which contains n-times a given list 
algnlist(t1,2);


{{a3,

  a1,

  a2,

  a3,

  a4,

  a5},

 {a3,

  a1,

  a2,

  a3,

  a4,

  a5}}
 
;


% Delete :

delete(x, {a,b,x,f,x});


{a,b,f,x}

;


% delete_all eliminates ALL occurences of x: 
delete_all(x,{a,b,x,f,x});


{a,b,f}

;


remove(t1,4);


{a3,a1,a2,a4,a5}

;


% delpair deletes a pair if it is possible.
delpair(a1,pair(t1,t1));


{{a3,a3},

 {a2,a2},

 {a3,a3},

 {a4,a4},

 {a5,a5}}

;

 
elmult(a1,t1);


1

;


frequency append(t1,t1);


{{a3,4},

 {a1,2},

 {a2,2},

 {a4,2},

 {a5,2}}

;


insert(a1,t1,3);


{a3,a1,a1,a2,a3,a4,a5}

;


li:=list(1,2,5);


li := {1,2,5}

;


%  Not to destroy an already ordered list during insertion:
insert_keep_order(4,li,lessp);


{1,2,4,5}

insert_keep_order(bb,t1,ordp);


{a3,

 a1,

 a2,

 a3,

 a4,

 a5,

 bb}

;


% the same function when appending two correctly ORDERED lists:
merge_list(li,li,<);


{1,1,2,2,5,5}

;


merge_list({5,2,1},{5,2,1},geq);


{5,5,2,2,1,1}

;


depth list t1;


2

;


depth a1;


0

% Any list can be flattened into a list of depth 1:
mkdepth_one {1,{{a,b,c}},{c,{{d,e}}}};


{1,

 a,

 b,

 c,

 c,

 d,

 e}

position(a2,t1);


3

appendn(li,li,li);


{1,2,5,1,2,5,1,2,5}

;


clear t1,li;


comment 5. THE BAG STRUCTURE AND OTHER FUNCTION FOR LISTS AND BAGS.
 ;

aa:=bag(x,1,"A");


aa := bag(x,1,A)

putbag bg1,bg2;


t

on errcont;


putbag list;


***** list invalid as BAG

off errcont;


aa:=bg1(x,y**2);


             2
aa := bg1(x,y )

;


if bagp aa then "this is a bag";


this is a bag

;


% A bag is a composite object:
clearbag bg2;


;


depth bg2(x);


0

;


depth bg1(x);


1

;


if baglistp aa then "this is a bag or list";


this is a bag or list

if baglistp {x} then "this is a bag or list";


this is a bag or list

if bagp {x} then "this is a bag";


if bagp aa then "this is a bag";


this is a bag

;


ab:=bag(x1,x2,x3);


ab := bag(x1,x2,x3)

al:=list(y1,y2,y3);


al := {y1,y2,y3}

% The basic lisp functions are also active for bags:
first ab;


bag(x1)
  third ab;


bag(x3)
  first al;


y1

last ab;


bag(x3)
 last al;


y3

belast ab;


bag(x1,x2)
 belast al;


{y1,y2}
 belast {a,b,a,b,a};


{a,b,a,b}

rest ab;


bag(x2,x3)
 rest al;


{y2,y3}


;


% The "dot" plays the role of the function "part":
ab.1;


x1
 al.3;


y3

on errcont;


ab.4;


***** Expression bag(x1,x2,x3) does not have part 4

off errcont;


a.ab;


bag(a,x1,x2,x3)

% ... but notice
1 . ab;


bag(1,x1,x2,x3)

% Coercion from bag to list and list to bag:
kernlist(aa);


    2
{x,y }

;


listbag(list x,bg1);


bg1(x)

;


length ab;


3

;


remove(ab,3);


bag(x1,x2)

;


delete(y2,al);


{y1,y3}

;


reverse al;


{y3,y2,y1}

;


member(x3,ab);


bag(x3)

;


al:=list(x**2,x**2,y1,y2,y3);


        2
al := {x ,

        2
       x ,

       y1,

       y2,

       y3}

;


elmult(x**2,al);


2

;


position(y3,al);


5

;


repfirst(xx,al);


     2
{xx,x ,y1,y2,y3}

;


represt(xx,ab);


bag(x1,xx)

;


insert(x,al,3);


  2  2
{x ,x ,x,y1,y2,y3}

insert( b,ab,2);


bag(x1,b,xx)

insert(ab,ab,1);


bag(bag(x1,xx),x1,xx)

;


substitute (new,y1,al);


  2  2
{x ,x ,new,y2,y3}

;


appendn(ab,ab,ab);


{x1,xx,x1,xx,x1,xx}

;


append(ab,al);


           2  2
bag(x1,xx,x ,x ,y1,y2,y3)

append(al,ab);


  2  2
{x ,x ,y1,y2,y3,x1,xx}

clear ab;

 a1;


a1

;

comment Association list or bag may be constructed and thoroughly used;

;


l:=list(a1,a2,a3,a4);


l := {a1,a2,a3,a4}

b:=bg1(x1,x2,x3);


b := bg1(x1,x2,x3)

al:=pair(list(1,2,3,4),l);


al := {{1,a1},{2,a2},{3,a3},{4,a4}}

ab:=pair(bg1(1,2,3),b);


ab := bg1(bg1(1,x1),bg1(2,x2),bg1(3,x3))

;


clear b;


comment : A BOOLEAN function abaglistp to test if it is an association;

;


if abaglistp bag(bag(1,2)) then "it is an associated bag";


it is an associated bag

;


% Values associated to the keys can be extracted
% first occurence ONLY.
;


asfirst(1,al);


{1,a1}

asfirst(3,ab);


bg1(3,x3)

;


assecond(a1,al);


{1,a1}

assecond(x3,ab);


bg1(3,x3)

;


aslast(z,list(list(x1,x2,x3),list(y1,y2,z)));


{y1,y2,z}

asrest(list(x2,x3),list(list(x1,x2,x3),list(y1,y2,z)));


{x1,x2,x3}

;


clear a1;


;


% All occurences.
asflist(x,bg1(bg1(x,a1,a2),bg1(x,b1,b2)));


bg1(bg1(x,a1,a2),bg1(x,b1,b2))

asslist(a1,list(list(x,a1),list(y,a1),list(x,y)));


{{x,a1},{y,a1}}

restaslist(bag(a1,x),bg1(bag(x,a1,a2),bag(a1,x,b2),bag(x,y,z)));


bg1(bg1(x,b2),bg1(a1,a2))

restaslist(list(a1,x),bag(bag(x,a1,a2),bag(a1,x,b2),bag(x,y,z)));


bag(bag(x,b2),bag(a1,a2))

;


Comment 6. SETS AND THEIR MANIPULATION FUNCTIONS
;

ts:=mkset list(a1,a1,a,2,2);


ts := {a1,a,2}

if setp ts then "this is a SET";


this is a SET

;


union(ts,ts);


{a1,a,2}

;


diffset(ts,list(a1,a));


{2}

diffset(list(a1,a),ts);


{}

;


symdiff(ts,ts);


{}

;


intersect(listbag(ts,set1),listbag(ts,set2));


set1(a1,a,2)



Comment 7. GENERAL PURPOSE UTILITY FUNCTIONS :;

;


clear a1,a2,a3,a,x,y,z,x1,x2,op$


;


% DETECTION OF A GIVEN VARIABLE IN A GIVEN SET
;


mkidnew();


g0

mkidnew(a);


ag1

;


dellastdigit 23;


2

;


detidnum aa;


detidnum a10;


10

detidnum a1b2z34;


34

;


list_to_ids list(a,1,rr,22);


a1rr22

;


if oddp 3 then "this is an odd integer";


this is an odd integer

;


<<prin2 1; followline 7; prin2 8;>>;

1
       8
;


operator foo;


foo(x):=x;


foo(x) := x

foo(x)==value;


value


x;


value
 	% it is equal to value

clear x;


;


randomlist(10,20);


{8,1,8,0,5,7,3,8,0,5,5,9,0,5,2,0,7,5,5,1}

% Generation of tables of random numbers:
% One dimensional:
mkrandtabl({4},10,ar);


{4}

array_to_list ar;


{5,4,4,7}

;


% Two dimensional:
mkrandtabl({3,4},10,ar);


*** array ar redefined 

{3,4}

array_to_list ar;


{{9,5,2,8},{7,3,5,2},{8,1,6,0}}
 
;


% With a base which is a decimal number:
on rounded;


mkrandtabl({5},3.5,ar);


*** array ar redefined 

{5}

array_to_list ar;


{2.77546499305,1.79693268486,3.43100115041,2.11636272025,3.45447023392}

off rounded;


;


% Combinatorial functions :
permutations(bag(a1,a2,a3));


bag(bag(a1,a2,a3),bag(a1,a3,a2),bag(a2,a1,a3),bag(a2,a3,a1),bag(a3,a1,a2),

    bag(a3,a2,a1))

permutations {1,2,3};


{{1,2,3},{1,3,2},{2,1,3},{2,3,1},{3,1,2},{3,2,1}}

;


cyclicpermlist{1,2,3};


{{1,2,3},{2,3,1},{3,1,2}}

;


combnum(8,3);


56

;


combinations({1,2,3},2);


{{2,3},{1,3},{1,2}}

;


perm_to_num({3,2,1,4},{1,2,3,4});


5

num_to_perm(5,{1,2,3,4});


{3,2,1,4}

;


operator op;


symmetric op;


op(x,y)-op(y,x);


0

remsym op;


op(x,y)-op(y,x);


op(x,y) - op(y,x)

;


labc:={a,b,c};


labc := {a,b,c}

symmetrize(labc,foo,cyclicpermlist);


foo(a,b,c) + foo(b,c,a) + foo(c,a,b)

symmetrize(labc,list,permutations);


{a,b,c} + {a,c,b} + {b,a,c} + {b,c,a} + {c,a,b} + {c,b,a}

symmetrize({labc},foo,cyclicpermlist);


foo({a,b,c}) + foo({b,c,a}) + foo({c,a,b})

;


extremum({1,2,3},lessp);


1

extremum({1,2,3},geq);


3

extremum({a,b,c},nordp);


c

;


funcvar(x+y);


{x,y}

funcvar(sin log(x+y));


{x,y}

funcvar(sin pi);


funcvar(x+e+i);


{x}

funcvar sin(x+i*y);


{y,x}

;


operator op;


*** op already defined as operator 

noncom op;


op(0)*op(x)-op(x)*op(0);


 - op(x)*op(0) + op(0)*op(x)

remnoncom op;


t

op(0)*op(x)-op(x)*op(0);


0

clear op;


;


depatom a;


a

depend a,x,y;


depatom a;


{x,y}

;


depend op,x,y,z;


;


implicit op;


op

explicit op;


op(x,y,z)

depend y,zz;


explicit op;


op(x,y(zz),z)

aa:=implicit op;


aa := op

clear op;


;


korder x,z,y;


korderlist;


(x z y)

;


if checkproplist({1,2,3},fixp) then "it is a list of integers";


it is a list of integers

;


if checkproplist({a,b1,c},idp) then "it is a list of identifiers";


it is a list of identifiers

;


if checkproplist({1,b1,c},idp) then "it is a list of identifiers";


;


lmix:={1,1/2,a,"st"};


            1
lmix := {1,---,a,st}
            2

;


extractlist(lmix,fixp);


{1}

extractlist(lmix,numberp);


    1
{1,---}
    2

extractlist(lmix,idp);


{a}

extractlist(lmix,stringp);


{st}

;


% From a list to an array:
list_to_array({a,b,c,d},1,ar);


*** array ar redefined 

array_to_list ar;


{a,b,c,d}
  
list_to_array({{a},{b},{c},{d}},2,ar);


*** array ar redefined 

;


comment 8. PROPERTIES AND FLAGS:;

;


putflag(list(a1,a2),fl1,t);


t

putflag(list(a1,a2),fl2,t);


t

displayflag a1;


{fl1,fl2}

;


clearflag a1,a2;


displayflag a2;


{}

putprop(x1,propname,value,t);


x1

displayprop(x1,prop);


{}

displayprop(x1,propname);


{propname,value}

;


putprop(x1,propname,value,0);


displayprop(x1,propname);


{}

;


Comment 9. CONTROL FUNCTIONS:;

;


alatomp z;


t

z:=s1;


z := s1

alatomp z;


t

;


alkernp z;


t

alkernp log sin r;


t

;


precp(difference,plus);


t

precp(plus,difference);


precp(times,.);


precp(.,times);


t

;


if stringp x then "this is a string";


if stringp "this is a string" then "this is a string";


this is a string

;


if nordp(b,a) then "a is ordered before b";


a is ordered before b

operator op;


for all x,y such that nordp(x,y) let op(x,y)=x+y;


op(a,a);


op(a,a)

op(b,a);


a + b

op(a,b);


op(a,b)

clear op;


;


depvarp(log(sin(x+cos(1/acos rr))),rr);


t

;


clear y,x,u,v;


clear op;


;


% DISPLAY and CLEARING of user's objects of various types entered
% to the console. Only TOP LEVEL assignments are considered up to now.
% The following statements must be made INTERACTIVELY. We put them
% as COMMENTS for the user to experiment with them. We do this because
% in a fresh environment all outputs are nil.
;


% THIS PART OF THE TEST SHOULD BE REALIZED INTERACTIVELY.
% SEE THE ** ASSIST LOG **  FILE .
%v1:=v2:=1;
%show scalars;
%aa:=list(a);
%show lists;
%array ar(2);
%show arrays;
%load matr$
%matrix mm;
%show matrices;
%x**2;
%saveas res;
%show saveids;
%suppress scalars;
%show scalars;
%show lists;
%suppress all;
%show arrays;
%show matrices;
;


comment end of the interactive part;

;


clear op;


operator op;


op(x,y,z);


op(x,y,s1)

clearop op;


t

;


clearfunctions abs,tan;


     *** abs is unprotected : Cleared ***
     *** tan is a protected function: NOT cleared ***


"Clearing is complete"

;


comment  THIS FUNCTION MUST BE USED WITH CARE !!!!!;

;


Comment 10. HANDLING OF POLYNOMIALS

clear x,y,z;

COMMENT  To see the internal representation :;

;


off pri;


;


pol:=(x-2*y+3*z**2-1)**3;


        3    2               2               2              2              4
pol := x  + x *( - 6*y + 9*s1  - 3) + x*(12*y  + y*( - 36*s1  + 12) + 27*s1  - 
            2           3    2       2                    4        2
       18*s1  + 3) - 8*y  + y *(36*s1  - 12) + y*( - 54*s1  + 36*s1  - 6) + 27*

         6        4       2
       s1  - 27*s1  + 9*s1  - 1

;


pold:=distribute pol;


             6        4       2    3      2        2   2      2         2
pold := 27*s1  - 27*s1  + 9*s1  + x  - 6*x *y + 9*x *s1  - 3*x  + 12*x*y  + 27*x

           4          2            2                     3       2   2       2
        *s1  - 18*x*s1  - 36*x*y*s1  + 12*x*y + 3*x - 8*y  + 36*y *s1  - 12*y  -

                4          2
         54*y*s1  + 36*y*s1  - 6*y - 1

;


on distribute;


leadterm (pold);


     6
27*s1

pold:=redexpr pold;


                4       2    3      2        2   2      2         2          4
pold :=  - 27*s1  + 9*s1  + x  - 6*x *y + 9*x *s1  - 3*x  + 12*x*y  + 27*x*s1  -

                2            2                     3       2   2       2
         18*x*s1  - 36*x*y*s1  + 12*x*y + 3*x - 8*y  + 36*y *s1  - 12*y  - 54*y*

          4          2
        s1  + 36*y*s1  - 6*y - 1

leadterm pold;


        4
 - 27*s1

;


off distribute;


polp:=pol$


leadterm polp;


 3
x

polp:=redexpr polp;


         2               2               2              2              4
polp := x *( - 6*y + 9*s1  - 3) + x*(12*y  + y*( - 36*s1  + 12) + 27*s1  - 18*s1
        2           3    2       2                    4        2             6
          + 3) - 8*y  + y *(36*s1  - 12) + y*( - 54*s1  + 36*s1  - 6) + 27*s1  -

              4       2
         27*s1  + 9*s1  - 1

leadterm polp;


 2               2
x *( - 6*y + 9*s1  - 3)

;


monom polp;


      6
{27*s1 ,

         4
  - 27*s1 ,

     2
 9*s1 ,

       2
  - 6*x *y,

    2   2
 9*x *s1 ,

       2
  - 3*x ,

       2
 12*x*y ,

        4
 27*x*s1 ,

           2
  - 18*x*s1 ,

             2
  - 36*x*y*s1 ,

 12*x*y,

 3*x,

       3
  - 8*y ,

     2   2
 36*y *s1 ,

        2
  - 12*y ,

           4
  - 54*y*s1 ,

        2
 36*y*s1 ,

  - 6*y,

 -1}

;


on pri;


;


splitterms polp;


      2  2
{{9*s1 *x ,

        2
  12*x*y ,

  12*x*y,

       4
  27*s1 *x,

  3*x,

       2  2
  36*s1 *y ,

       2
  36*s1 *y,

       6
  27*s1 ,

      2
  9*s1 },

     2
 {6*x *y,

     2
  3*x ,

       2
  36*s1 *x*y,

       2
  18*s1 *x,

     3
  8*y ,

      2
  12*y ,

       4
  54*s1 *y,

  6*y,

       4
  27*s1 ,

  1}}

;


splitplusminus polp;


        6       4         2  2        2  2        2         2        2
{3*(9*s1  + 9*s1 *x + 3*s1 *x  + 12*s1 *y  + 12*s1 *y + 3*s1  + 4*x*y  + 4*x*y

     + x),

         4          4        2            2        2        2      3       2
  - 54*s1 *y - 27*s1  - 36*s1 *x*y - 18*s1 *x - 6*x *y - 3*x  - 8*y  - 12*y

  - 6*y - 1}

;


divpol(pol,x+2*y+3*z**2);


     4       2          2         2    2                     2
{9*s1  + 6*s1 *x - 24*s1 *y - 9*s1  + x  - 8*x*y - 3*x + 28*y  + 18*y + 3,

        3       2
  - 64*y  - 48*y  - 12*y - 1}

;


lowestdeg(pol,y);


0

;


Comment 11.  HANDLING OF SOME TRANSCENDENTAL FUNCTIONS:;

;


trig:=((sin x)**2+(cos x)**2)**4;


trig := 

      8           6       2           4       4           2       6         8
cos(x)  + 4*cos(x) *sin(x)  + 6*cos(x) *sin(x)  + 4*cos(x) *sin(x)  + sin(x)

trigreduce trig;


1

trig:=sin (5x);


trig := sin(5*x)

trigexpand trig;


                4            2       2         4
sin(x)*(5*cos(x)  - 10*cos(x) *sin(x)  + sin(x) )

trigreduce ws;


sin(5*x)

trigexpand sin(x+y+z);


cos(s1)*cos(x)*sin(y) + cos(s1)*cos(y)*sin(x) + cos(x)*cos(y)*sin(s1)

 - sin(s1)*sin(x)*sin(y)

;


;


hypreduce (sinh x **2 -cosh x **2);


-1

;


;


clear a,b,c,d;


;



Comment 13. HANDLING OF N-DIMENSIONAL VECTORS:;

;


clear u1,u2,v1,v2,v3,v4,w3,w4;


u1:=list(v1,v2,v3,v4);


u1 := {v1,v2,v3,v4}

u2:=bag(w1,w2,w3,w4);


u2 := bag(w1,w2,w3,w4)

%
sumvect(u1,u2);


{v1 + w1,

 v2 + w2,

 v3 + w3,

 v4 + w4}

minvect(u2,u1);


bag( - v1 + w1, - v2 + w2, - v3 + w3, - v4 + w4)

scalvect(u1,u2);


v1*w1 + v2*w2 + v3*w3 + v4*w4

crossvect(rest u1,rest u2);


{v3*w4 - v4*w3,

  - v2*w4 + v4*w2,

 v2*w3 - v3*w2}

mpvect(rest u1,rest u2, minvect(rest u1,rest u2));


0

scalvect(crossvect(rest u1,rest u2),minvect(rest u1,rest u2));


0

;


Comment 14. HANDLING OF GRASSMANN OPERATORS:;

;


putgrass eta,eta1;


grasskernel:=
{eta(~x)*eta(~y) => -eta y * eta x when nordp(x,y),
(~x)*(~x) => 0 when grassp x};


grasskernel := {eta(~x)*eta(~y) =>  - eta(y)*eta(x) when nordp(x,y),

                ~x*~x => 0 when grassp(x)}

;


eta(y)*eta(x);


eta(y)*eta(x)

eta(y)*eta(x) where grasskernel;


 - eta(x)*eta(y)

let grasskernel;


eta(x)^2;


0

eta(y)*eta(x);


 - eta(x)*eta(y)

operator zz;


grassparity (eta(x)*zz(y));


1

grassparity (eta(x)*eta(y));


0

grassparity(eta(x)+zz(y));


parity undefined

clearrules grasskernel;


grasskernel:=
{eta(~x)*eta(~y) => -eta y * eta x when nordp(x,y),
eta1(~x)*eta(~y) => -eta x * eta1 y,
eta1(~x)*eta1(~y) => -eta1 y * eta1 x when nordp(x,y),
(~x)*(~x) => 0 when grassp x};


grasskernel := {eta(~x)*eta(~y) =>  - eta(y)*eta(x) when nordp(x,y),

                eta1(~x)*eta(~y) =>  - eta(x)*eta1(y),

                eta1(~x)*eta1(~y) =>  - eta1(y)*eta1(x) when nordp(x,y),

                ~x*~x => 0 when grassp(x)}

;


let grasskernel;


eta1(x)*eta(x)*eta1(z)*eta1(w);


 - eta(x)*eta1(s1)*eta1(w)*eta1(x)

clearrules grasskernel;


remgrass eta,eta1;


clearop zz;


t

;


Comment  15. HANDLING OF MATRICES:;

;


clear m,mm,b,b1,bb,cc,a,b,c,d,a1,a2;


load_package matrix;


baglmat(bag(bag(a1,a2)),m);


t

m;


[a1  a2]


on errcont;


;


baglmat(bag(bag(a1),bag(a2)),m);


***** (mat ((*sq ((((a1 . 1) . 1)) . 1) t) (*sq ((((a2 . 1) . 1)) . 1) t))) 
should be an identifier 

off errcont;


%    **** i.e. it cannot redefine the matrix! in order
%         to avoid accidental redefinition of an already given matrix;

clear m;

 baglmat(bag(bag(a1),bag(a2)),m);


t

m;


[a1]
[  ]
[a2]


on errcont;


baglmat(bag(bag(a1),bag(a2)),bag);


***** operator bag invalid as matrix

off errcont;


comment  Right since a bag-like object cannot become a matrix.;

;


coercemat(m,op);


op(op(a1),op(a2))

coercemat(m,list);


{{a1},{a2}}

;


on nero;


unitmat b1(2);


matrix b(2,2);


b:=mat((r1,r2),(s1,s2));


     [r1  r2]
b := [      ]
     [s1  s2]


b1;


[1  0]
[    ]
[0  1]

b;


[r1  r2]
[      ]
[s1  s2]


mkidm(b,1);


[1  0]
[    ]
[0  1]


;


seteltmat(b,newelt,2,2);


[r1    r2  ]
[          ]
[s1  newelt]


geteltmat(b,2,1);


s1

%
b:=matsubr(b,bag(1,2),2);


     [r1  r2]
b := [      ]
     [1   2 ]


;


submat(b,1,2);


[1]


;


bb:=mat((1+i,-i),(-1+i,-i));


      [i + 1   - i]
bb := [           ]
      [i - 1   - i]


cc:=matsubc(bb,bag(1,2),2);


      [i + 1  1]
cc := [        ]
      [i - 1  2]


;


cc:=tp matsubc(bb,bag(1,2),2);


      [i + 1  i - 1]
cc := [            ]
      [  1      2  ]


matextr(bb, bag,1);


bag(i + 1, - i)

;


matextc(bb,list,2);


{ - i, - i}

;


hconcmat(bb,cc);


[i + 1   - i  i + 1  i - 1]
[                         ]
[i - 1   - i    1      2  ]


vconcmat(bb,cc);


[i + 1   - i ]
[            ]
[i - 1   - i ]
[            ]
[i + 1  i - 1]
[            ]
[  1      2  ]


;


tpmat(bb,bb);


[ 2*i     - i + 1   - i + 1  -1]
[                              ]
[  -2     - i + 1   i + 1    -1]
[                              ]
[  -2     i + 1     - i + 1  -1]
[                              ]
[ - 2*i   i + 1     i + 1    -1]


bb tpmat bb;


[ 2*i     - i + 1   - i + 1  -1]
[                              ]
[  -2     - i + 1   i + 1    -1]
[                              ]
[  -2     i + 1     - i + 1  -1]
[                              ]
[ - 2*i   i + 1     i + 1    -1]


;


clear hbb;


hermat(bb,hbb);


[ - i + 1   - (i + 1)]
[                    ]
[   i          i     ]


% id hbb changed to a matrix id and assigned to the hermitian matrix
% of bb.
;


load_package HEPHYS;



% Use of remvector.
;


vector v1,v2;


v1.v2;


v1.v2

remvector v1,v2;


on errcont;


v1.v2;


***** v1 v2 invalid as list or bag

off errcont;


% To see the compatibility with ASSIST:
v1.{v2};


{v1,v2}

;


index u;

 vector v;


(v.u)^2;


v.v

remindex u;


t

(v.u)^2;


   2
u.v

;


% Gamma matrices properties may be translated to any identifier:
clear l,v;


vector v;


g(l,v,v);


v.v

mkgam(op,t);


t

op(l,v,v);


v.v

mkgam(g,0);


operator g;


g(l,v,v);


g(l,v,v)

;


clear g,op;


;


% showtime;
end;


Time for test: 1561 ms, plus GC time: 90 ms


REDUCE Historical
REDUCE Sourceforge Project | Historical SVN Repository | GitHub Mirror | SourceHut Mirror | NotABug Mirror | Chisel Mirror | Chisel RSS ]