module solve; % Solve one or more algebraic equations.
% Author: David R. Stoutemyer.
% Major modifications by: Anthony C. Hearn, Herbert Melenk, Donald R.
% Morrison and Rainer Schoepf.
create!-package('(solve ppsoln solvelnr glsolve solvealg solvetab
quartic),nil);
% Other packages needed by solve package.
load!-package 'matrix;
fluid '(!*allbranch !*exp !*ezgcd !*fullroots !*limitedfactors
!*multiplicities !*nonlnr !*notseparate !*numval !*numval!*
!*rounded !*solvealgp !*solvesingular !!gcd !:prec!: asymplis!*
dmode!* kord!* vars!* !*!*norootvarrenamep!*!*);
% NB: !*!*norootvarrenamep!*!* is internal to this module, and should
% *never* be changed by a user.
fluid '(inside!-solveeval solve!-gensymcounter);
solve!-gensymcounter := 1;
global '(!!arbint multiplicities!*);
switch allbranch,fullroots,multiplicities,solvesingular; % nonlnr.
put('fullroots,'simpfg,'((t (rmsubs))));
!*nonlnr := t; % Put it on for now.
flag('(!*allbranch multiplicities!*),'share);
% ***** Some Non-local variables *****
!*allbranch := t; % Returns all branches of solutions if T.
% !*multiplicities Lists all roots with multiplicities if on.
% !*fullroots := t; % Computes full roots of cubics and quartics.
!*solvesingular := t; % Default value.
% !!gcd SOLVECOEFF returns GCD of powers of its arg in
% this. With the decompose code, this should
% only occur with expressions of form x^n + c.
algebraic operator one_of;
put('arbint,'simpfn,'simpiden);
% algebraic operator arbreal;
symbolic operator expand_cases;
symbolic procedure simp!-arbcomplex u;
simpiden('arbcomplex . u) where dmode!*=nil;
deflist('((arbcomplex simp!-arbcomplex)),'simpfn);
% ***** Utility Functions *****
symbolic procedure freeofl(u,v);
null v or freeof(u,car v) and freeofl(u,cdr v);
symbolic procedure allkern elst;
% Returns list of all top-level kernels in the list of standard
% quotients elst. Corrected 5 Feb 92 by Francis Wright.
if null elst then nil
else union(kernels numr car elst, allkern cdr elst);
symbolic procedure topkern(u,x);
% Returns list of top level kernels in the standard form u that
% contain the kernel x;
for each j in kernels u conc if not freeof(j,x) then list j else nil;
symbolic procedure coeflis ex;
% Ex is a standard form. Returns a list of the coefficients of the
% main variable in ex in the form ((expon . coeff) (expon . coeff)
% ... ), where the expon's occur in increasing order, and entries do
% not occur of zero coefficients. We need to reorder coefficients
% since kernel order can change in the calling function.
begin scalar ans,var;
if domainp ex then return (0 . ex);
var := mvar ex;
while not domainp ex and mvar ex=var do
<<ans := (ldeg ex . reorder lc ex) . ans; ex := red ex>>;
if ex then ans := (0 . reorder ex) . ans;
return ans
end;
% ***** Evaluation Interface *****
put('solve,'psopfn,'solveeval);
symbolic procedure solveeval u;
begin scalar !*ezgcd,!!gcd,vars!*; integer nargs;
if atom u then rerror(solve,1,"SOLVE called with no equations")
else if null dmode!* then !*ezgcd := t;
if not inside!-solveeval then solve!-gensymcounter := 1;
nargs := length u;
u := (if nargs=1 then solve0(car u,nil)
else if nargs=2 then solve0(car u, cadr u)
else <<lprim "Please put SOLVE unknowns in a list";
solve0(car u,'list . cdr u)>>)
where inside!-solveeval = t;
return !*solvelist2solveeqlist u
end;
symbolic procedure solve!-gensym();
begin
scalar w;
w := explode solve!-gensymcounter;
solve!-gensymcounter := solve!-gensymcounter+1;
while length w < 4 do w := '!0 . w;
% If users have things to solve with names like G0001 in them, there
% could be confusion.
return compress ('g . w)
end;
symbolic procedure !*solvelist2solveeqlist u;
begin scalar x,y,z;
for each j in u do
<<if caddr j=0 then rerror(solve,2,"zero multiplicity")
else if null cadr j
then x := for each k in car j collect
list('equal,!*q2a k,0)
else x := for each k in pair(cadr j,car j)
collect list('equal,car k,!*q2a cdr k);
if length vars!* > 1 then x := 'list . x else x := car x;
z := (caddr j . x) . z>>;
z := sort(z,function ordp);
x := nil;
if !*multiplicities
then <<for each k in z do for i := 1:car k do x := cdr k . x;
multiplicities!* := nil>>
else <<for each k in z do << x := cdr k . x; y := car k . y>>;
multiplicities!* := 'list . reversip y>>;
% Now check for redundant solutions.
% if length vars!*>1 then z := check_solve_redundancy z;
return 'list . reversip x
end;
% symbolic procedure check_solve_redundancy u;
% % We assume all solutions are prefixed by LIST.
% begin scalar x,y;
% x := for each j in u collect cdr j; % Remove the LIST.
% for each j in u do if not supersetlist(cdr j,x) then y:= j . y;
% return reversip!* y
% end;
symbolic procedure supersetlist(u,v);
% Returns true if u is a non-equal superset of any element of v.
v and
(u neq car v and null setdiff(car v,u) or supersetlist(u,cdr v));
% ***** Fundamental SOLVE Procedures *****
Comment most of these procedures return a list of "solve solutions". A
solve solution is a list with three fields: the list of solutions,
the corresponding variables (or NIL if the equations could not be
solved --- in which case there is only one solution in the first
field) and the multiplicity;
symbolic procedure solve0(elst,xlst);
% This is the driving function for the solve package.
% Elst is any prefix expression, including a list prefixed by LIST.
% Xlst is a kernel or list of kernels. Solves eqns in elst for
% vars in xlst, returning either a list of solutions, or a single
% solution.
begin scalar !*exp,!*notseparate,w; integer neqn;
!*exp := !*notseparate := t;
% Form a list of equations as expressions.
elst := for each j in solveargchk elst collect simp!* !*eqn2a j;
neqn := length elst; % There must be at least one.
% Determine variables.
if null xlst
then <<vars!* := for each j in allkern elst join
if constant_exprp j then nil else list j;
% Exclude constant kernels from list.
terpri();
if null vars!* then nil
else if cdr vars!*
then <<prin2!* "Unknowns: "; maprin('list . vars!*)>>
else <<prin2!* "Unknown: "; maprin car vars!*>>;
terpri!* nil>>
else <<xlst := solveargchk xlst;
vars!* := for each j in xlst collect !*a2k j>>;
if length vars!* = 0
then rerror(solve,3,"SOLVE called with no variables")
else if neqn = 1
then if null numr car elst
then return if !*solvesingular
then list list(for each j in vars!*
collect !*f2q makearbcomplex(),
vars!*,1)
else nil
else if length vars!*=1
then if solutionp(w := solvesq(car elst,car vars!*,1))
or null !*solvealgp
or univariatep numr car elst
then return w;
% More than one equation or variable, or single eqn has no solution.
elst := for each j in elst collect numr j;
w := solvesys(elst,vars!*);
if car w eq 't or car w eq 'inconsistent then return cdr w
else if car w eq 'failed or null car w
then return for each j in elst collect list(list(j ./ 1),nil,1)
else errach list("Improper solve solution tag",car w)
end;
symbolic procedure solutionp u;
null u or cadar u and not root_of_soln_p caar u and solutionp cdr u;
symbolic procedure root_of_soln_p u;
null cdr u and kernp (u := car u) and eqcar(mvar numr u,'root_of);
symbolic procedure solveargchk u;
if getrtype (u := reval u) eq 'list then cdr reval u
else if atom u or not(car u eq 'lst) then list u
else cdr u;
% ***** Procedures for solving a single eqn *****
symbolic procedure solvesq (ex,var,mul);
% Attempts to find solutions for standard quotient ex with respect to
% top level occurrences of var and kernels containing variable var.
% Solutions containing more than one such kernel are returned
% unsolved, and solve1 is applied to the other solutions. Integer
% mul is the multiplicity passed from any previous factorizations.
% Returns a list of triplets consisting of solutions, variables and
% multiplicity.
begin scalar e1,oldkorder,x1,y,z; integer mu;
ex := numr ex;
if null(x1 := topkern(ex,var)) then return nil;
oldkorder := setkorder list var;
% The following section should be extended for other cases.
e1 := reorder ex;
setkorder oldkorder;
if mvar e1 = var and null cdr x1 and ldeg e1 =1
then return {{{quotsq(negf reorder red e1 ./1,
reorder lc e1 ./ 1)},
{var},mul}};
% don't call fctrf here in rounded mode, so polynomial won't get
% rounded (since factoring isn't going to succeed)
ex := if !*rounded then {1,ex . 1} else fctrf ex;
% Now process monomial.
if domainp car ex then ex := cdr ex
else ex := (car ex . 1) . cdr ex;
for each j in ex do
<<e1 := car j;
x1 := topkern(e1,var);
mu := mul*cdr j;
% Test for decomposition of e1. Only do if rounded is off.
if null !*rounded and length x1=1 and length kernels e1<5
and length(y := decomposef1(e1,nil))>1
and (y := solvedecomp(reverse y,car x1,mu))
then z := append(y,z)
else if (degr(y := reorder e1,var) where kord!*={var}) = 1
and not smemq(var,delete(var,x1))
then <<y := {{quotsq(!*f2q negf reorder red y,
!*f2q reorder lc y)},
{var},mu};
z := y . z>>
else if x1
then z := append(
if null cdr x1 then solve1(e1,car x1,var,mu)
% Inhibit use of principle-of-powers-soln, since solvealg
% code is more powerful.
% else if (y := principle!-of!-powers!-soln(e1,x1,var,mu))
% neq 'unsolved
% then y
else if not smemq('sol,
(x1:=simp!* list('sol,mk!*sq(e1 ./ 1), var)))
then solvesq(x1,var,mu)
% else list list(list(e1 ./ 1),nil,mu),
else mkrootsof(e1 ./ 1,var,mu),
z)>>;
return z
end;
symbolic procedure solvedecomp(u,var,mu);
% Solve for decomposed expression. At the moment, only one
% level of decomposition is considered.
begin scalar failed,x;
if length(x := solve0(car u,cadadr u))=1 then return nil;
u := cdr u;
while u do
<<x := for each j in x conc
if caddr j neq 1 or null cadr j
then <<lprim list("Tell Hearn solvedecomp",x,u);
failed := t;
nil>>
else solve0(list('difference,prepsq caar j,caddar u),
if cdr u then cadadr u else var);
if failed then u := nil else u := cdr u>>;
return if failed then nil else adjustmul(x,mu)
end;
symbolic procedure adjustmul(u,n);
% Multiply the multiplicities of the solutions in u by n.
if n=1 then u
else for each x in u collect list(car x,cadr x,n*caddr x);
symbolic procedure solve1(e1,x1,var,mu);
Comment e1 is a standard form, non-trivial in the kernel x1, which
is itself a function of var, mu is an integer. Uses roots of
unity, known solutions, inverses, together with quadratic, cubic
and quartic formulas, treating other cases as unsolvable.
Returns a list of solve solutions;
begin scalar !*numval!*;
!*numval!* := !*numval; % Keep value for use in solve11.
return solve11(e1,x1,var,mu)
end;
symbolic procedure solve11(e1,x1,var,mu);
begin scalar !*numval,b,coefs,hipow; integer n;
% The next test should check for true degree in var.
if null !*fullroots and null !*rounded and numrdeg(e1,var)>2
then return mkrootsof(e1 ./ 1,var,mu);
!*numval := t; % Assume that actual numerical values wanted.
coefs:= errorset!*(list('solvecoeff,mkquote e1,mkquote x1),nil);
% if atom coefs then return list list(list(e1 . 1),nil,mu);
if atom coefs or atom x1 and x1 neq var
then return mkrootsof(e1 ./ 1,var,mu);
% solvecoeff problem - no soln.
coefs := car coefs;
n:= !!gcd; % numerical gcd of powers.
hipow := caar reverse coefs;
if hipow = 1
then return begin scalar lincoeff,y,z;
if null cdr coefs then b := 0
else b := prepsq quotsq(negsq cdar coefs,cdadr coefs);
if n neq 1 then b := list('expt,b,list('quotient,1,n));
% We may need to merge more solutions in the following if
% there are repeated roots.
for k := 0:n-1 do % equation in power of var.
<<lincoeff := simp!* list('times,b,
mkexp list('quotient,list('times,k,2,'pi),n));
if x1=var
then y := solnmerge(list lincoeff,list var,mu,y)
else if not idp(z := car x1)
then typerr(z,"solve operator")
else if z := get(z,'solvefn)
then y := append(apply1(z,list(cdr x1,var,mu,lincoeff))
,y)
else if (z := get(car x1,'inverse)) % known inverse
then y := append(solvesq(subtrsq(simp!* cadr x1,
simp!* list(z,mk!*sq lincoeff)),
var,mu),y)
else y := list(list subtrsq(simp!* x1,lincoeff),nil,mu)
. y>>;
return y
end
else if hipow=2
then return <<x1 := exptsq(simp!* x1,n);
% allows for power variable
for each j in solvequadratic(getcoeff(coefs,2),
getcoeff(coefs,1),getcoeff(coefs,0))
conc solvesq(subtrsq(x1,j),var,mu)>>
else return solvehipow(e1,x1,var,mu,coefs,hipow)
end;
symbolic procedure getcoeff(u,n);
% Get the nth coefficient in the list u as a standard quotient.
if null u then nil ./ 1
else if n=caar u then cdar u
else if n<caar u then nil ./ 1
else getcoeff(cdr u,n);
symbolic procedure putcoeff(u,n,v);
% Replace the nth coefficient in the list u by v.
if null u then list(n . v)
else if n=caar u then (n . v) . cdr u
else if n<caar u then (n . v) . u
else car u . putcoeff(cdr u,n,v);
symbolic procedure solvehipow(e1,x1,var,mu,coefs,hipow);
% Solve a system with degree greater than 2. Since we cannot write
% down the solution directly, we look for various forms that we
% know how to solve.
begin scalar b,c,d,f,rcoeffs;
f:=(hipow+1)/2;
d:=exptsq(simp!* x1,!!gcd);
rcoeffs := reverse coefs;
return if solve1test1(coefs,rcoeffs,f) % Coefficients symmetric.
then if f+f=hipow+1 % odd
then <<c:=addsq(d, 1 ./ 1);
append(solvesq(c,var,mu),
solvesq(quotsq(e1 ./ 1, c),var,mu))>>
else <<coefs := putcoeff(coefs,0,2 ./ 1);
coefs := putcoeff(coefs,1,simp!* '!!x);
c:=addsq(multsq(getcoeff(coefs,f+1),
getcoeff(coefs,1)),
getcoeff(coefs,f));
for j:=2:f do <<
coefs := putcoeff(coefs,j,
subtrsq(multsq(getcoeff(coefs,1),
getcoeff(coefs,j-1)),
getcoeff(coefs,j-2)));
c:=addsq(c,multsq(getcoeff(coefs,j),
getcoeff(coefs,f+j)))>>;
for each j in solvesq(c,'!!x,mu) conc
solvesq(addsq(1 ./ 1,multsq(d,subtrsq(d,caar j))),
var,caddr j)>>
else if solve1test2(coefs,rcoeffs,f)
% coefficients antisymmetric
then <<c:=addsq(d,(-1 ./1));
b := solvesq(c,var,mu);
e1 := quotsq(e1 ./ 1, c);
if f+f = hipow
then <<c := addsq(d,(1 ./ 1));
b := append(solvesq(c,var,mu),b);
e1 := quotsq(e1,c)>>;
append(solvesq(e1,var,mu),b)>>
% equation has no symmetry
% now look for real roots before cubics or quartics. We must
% reverse the answer from solveroots so that roots come out
% in same order from SOLVE.
% else if !*numval!* and dmode!* memq '(!:rd!: !:cr!:)
% this forces solveroots independent of numval.
else if !*rounded and univariatep e1
then reversip solveroots(e1,var,mu)
else if null !*fullroots then mkrootsof(e1 ./ 1,var,mu)
else if hipow=3
then for each j in solvecubic(getcoeff(coefs,3),
getcoeff(coefs,2),
getcoeff(coefs,1),
getcoeff(coefs,0))
conc solvesq(subtrsq(d,j),var,mu)
else if hipow=4
then for each j in solvequartic(getcoeff(coefs,4),
getcoeff(coefs,3),
getcoeff(coefs,2),
getcoeff(coefs,1),
getcoeff(coefs,0))
conc solvesq(subtrsq(d,j),var,mu)
% else list list(list(e1 ./ 1),nil,mu)
else mkrootsof(e1 ./ 1,var,mu)
% We can't solve quintic and higher.
end;
symbolic procedure solnmerge(u,varlist,mu,y);
% Merge solutions in case of multiplicities. It may be that this is
% only needed for the trivial solution x=0.
if null y then list list(u,varlist,mu)
else if u = caar y and varlist = cadar y
then list(caar y,cadar y,mu+caddar y) . cdr y
else car y . solnmerge(u,varlist,mu,cdr y);
symbolic procedure nilchk u; if null u then !*f2q u else u;
symbolic procedure solve1test1(coefs,rcoeffs,f);
% True if equation is symmetric in its coefficients. f is midpoint.
begin integer j,p;
if null coefs or caar coefs neq 0 or null !*fullroots
then return nil;
p := caar coefs + caar rcoeffs;
a: if j>f then return t
else if (caar coefs + caar rcoeffs) neq p
or cdar coefs neq cdar rcoeffs then return nil;
coefs := cdr coefs;
rcoeffs := cdr rcoeffs;
j := j+1;
go to a
end;
symbolic procedure solve1test2(coefs,rcoeffs,f);
% True if equation is antisymmetric in its coefficients. f is
% midpoint.
begin integer j,p;
if null coefs or caar coefs neq 0 or null !*fullroots
then return nil;
p := caar coefs + caar rcoeffs;
a: if j>f then return t
else if (caar coefs + caar rcoeffs) neq p
or numr addsq(cdar coefs,cdar rcoeffs) then return nil;
coefs := cdr coefs;
rcoeffs := cdr rcoeffs;
j := j+1;
go to a
end;
symbolic procedure solveabs u;
begin scalar mu,var,lincoeff;
var := cadr u;
mu := caddr u;
lincoeff := cadddr u;
u := simp!* caar u;
return append(solvesq(addsq(u,lincoeff),var,mu),
solvesq(subtrsq(u,lincoeff),var,mu))
end;
put('abs,'solvefn,'solveabs);
symbolic procedure solveexpt u;
begin scalar c,mu,var,lincoeff;
var := cadr u;
mu := caddr u;
lincoeff := cadddr u;
if null numr lincoeff then return nil;
u := car u;
return if freeof(car u,var) % c**(...) = b.
then <<if !*allbranch
then <<!!arbint:=!!arbint+1;
c:=list('times,2,'i,'pi,
list('arbint,!!arbint))>>
else c:=0;
solvesq(subtrsq(simp!* cadr u,
quotsq(addsq(solveexpt!-logterm lincoeff,
simp!* c),
simp!* list('log,car u))),var,mu)>>
else if freeof(cadr u,var) % (...)**(m/n) = b;
then if ratnump cadr u
then solve!-fractional!-power(u,lincoeff,var,mu)
else << % (...)**c = b.
if !*allbranch
then <<!!arbint:=!!arbint+1;
c := mkexp list('quotient,
list('times,2,'pi,
list('arbint,!!arbint)),
cadr u)>>
% c := mkexp list('times,
% list('arbreal,!!arbint))>>
else c:=1;
solvesq(subtrsq(simp!* car u,
multsq(simp!* list('expt,
mk!*sq lincoeff,
mk!*sq invsq
simp!* cadr u),
simp!* c)),var,mu)>>
% (...)**(...) = b : transcendental.
% else list list(list subtrsq(simp!*('expt . u),lincoeff),nil,mu)
else mkrootsof(subtrsq(simp!*('expt . u),lincoeff),var,mu)
end;
put('expt,'solvefn,'solveexpt);
symbolic procedure solveexpt!-logterm lincoeff;
% compute log(lincoeff), ignoring multiplicity and converting
% log(-a) to log(a) + i pi.
if not !*allbranch or not minusf numr lincoeff
then simp!* list('log,mk!*sq lincoeff)
else
addsq(simp!*'(times i pi),
simp!* {'log,mk!*sq(negf numr lincoeff ./ denr lincoeff)});
symbolic procedure solvelog u;
solvesq(subtrsq(simp!* caar u,simp!* list('expt,'e,mk!*sq cadddr u)),
cadr u,caddr u);
put('log,'solvefn,'solvelog);
symbolic procedure solveinvpat(u,op);
begin scalar c,d,z,f;
f:=get(op,'solveinvpat);
if smemq('arbint,f) then f:=subst(
if !*allbranch then list('arbint,!!arbint:=!!arbint+1) else 0,
'arbint,f);
if not !*allbranch then f:={car f};
return
for each c in reverse f join
solvesq(simp!*
subst(caar u,'(~v),subst(mk!*sq cadddr u,'(~r),c)),
cadr u,caddr u)
end;
put('cos,'solveinvpat,
{ quote (- ~v + acos(~r) + 2*arbint*pi),
quote (- ~v - acos(~r) + 2*arbint*pi) });
put('cos,'solvefn, '(lambda(u) (solveinvpat u 'cos)));
put('sin,'solveinvpat,
{ quote (- ~v + asin(~r) + 2*arbint*pi),
quote (- ~v - asin(~r) + 2*arbint*pi + pi) });
put('sin,'solvefn, '(lambda(u) (solveinvpat u 'sin)));
put('sec,'solveinvpat,
{ quote (- ~v + asec(~r) + 2*arbint*pi),
quote (- ~v - asec(~r) + 2*arbint*pi) });
put('sec,'solvefn, '(lambda(u) (solveinvpat u 'sec)));
put('csc,'solveinvpat,
{ quote (- ~v + acsc(~r) + 2*arbint*pi),
quote (- ~v - acsc(~r) + 2*arbint*pi + pi) });
put('csc,'solvefn, '(lambda(u) (solveinvpat u 'csc)));
put('tan,'solveinvpat, { quote (- ~v + atan(~r) + arbint*pi)});
put('tan,'solvefn, '(lambda(u) (solveinvpat u 'tan)));
put('cot,'solveinvpat, { quote (- ~v + acot(~r) + arbint*pi)});
put('cot,'solvefn, '(lambda(u) (solveinvpat u 'cot)));
put('cosh,'solveinvpat,
{ quote (- ~v + acosh(~r) + 2*arbint*i*pi),
quote (- ~v - acosh(~r) + 2*arbint*i*pi) });
put('cosh,'solvefn, '(lambda(u) (solveinvpat u 'cosh)));
put('sinh,'solveinvpat,
{ quote (- ~v + asinh(~r) + 2*arbint*i*pi),
quote (- ~v - asinh(~r) + 2*arbint*i*pi + i*pi) });
put('sinh,'solvefn, '(lambda(u) (solveinvpat u 'sinh)));
put('sech,'solveinvpat,
{ quote (- ~v + asech(~r) + 2*arbint*i*pi),
quote (- ~v - asech(~r) + 2*arbint*i*pi) });
put('sech,'solvefn, '(lambda(u) (solveinvpat u 'sech)));
put('csch,'solveinvpat,
{ quote (- ~v + acsch(~r) + 2*arbint*i*pi),
quote (- ~v - acsch(~r) + 2*arbint*i*pi + i*pi) });
put('csch,'solvefn, '(lambda(u) (solveinvpat u 'csch)));
put('tanh,'solveinvpat, { quote (- ~v + atanh(~r) + arbint*i*pi)});
put('tanh,'solvefn, '(lambda(u) (solveinvpat u 'tanh)));
put('coth,'solveinvpat, { quote (- ~v + acoth(~r) + arbint*i*pi)});
put('coth,'solvefn, '(lambda(u) (solveinvpat u 'coth)));
symbolic procedure mkexp u;
reval(aeval!*({'plus,{'cos,x},{'times,'i,{'sin,x}}}
where x = reval u)
where !*rounded = nil,dmode!* = nil);
symbolic procedure solvecoeff(ex,var);
% Ex is a standard form and var a kernel. Returns a list of
% dotted pairs of exponents and coefficients (as standard quotients)
% of var in ex, lowest power first, with exponents divided by their
% gcd. This gcd is stored in !!GCD.
begin scalar clist,oldkord;
oldkord := updkorder var;
clist := reorder ex;
setkorder oldkord;
clist := coeflis clist;
!!gcd := caar clist;
for each x in cdr clist do !!gcd := gcdn(car x,!!gcd);
for each x in clist
do <<rplaca(x,car x/!!gcd); rplacd(x,cdr x ./ 1)>>;
return clist
end;
symbolic procedure solveroots(ex,var,mu);
% Ex is a square and content free univariate standard form, var the
% relevant variable and mu the root multiplicity. Finds insoluble,
% complex roots of EX, returning a list of solve solutions.
begin scalar y;
y := reval list('root_val,mkquote mk!*sq(ex ./ 1));
if not(car y eq 'list)
then errach list("incorrect root format",ex);
return for each z in cdr y collect
% if not(car z eq 'equal) or cadr z neq var
% then errach list("incorrect root format",ex)
% else list(list simp caddr z,list var,mu)
list(list simp z,list var,mu)
end;
% ***** Procedures for solving a system of eqns *****
symbolic procedure solvesys(exlist,varlis);
% Exlist is a list of standard forms, varlis a list of kernels. If
% the elements of varlis are linear in the elements of exlist, and
% further the system of linear eqns so defined is non-singular, then
% SOLVESYS returns a list of a list of standard quotients which are
% solutions of the system, ordered as in varlis.
begin scalar eqtype,oldkord;
oldkord := setkorder varlis;
exlist := for each j in exlist collect reorder j;
% See if equations are linear or non-linear.
if errorp errorset!*(list('solvenonlnrchk,mkquote exlist,
mkquote varlis),nil)
then eqtype := 'solvenonlnrsys
else eqtype := 'solvelnrsys;
% Solve for appropriate equation type.
if eqtype eq 'solvenonlnrsys and null !*nonlnr
then <<setkorder oldkord;
rerror(solve,4,
"Non linear equation solving not yet implemented")>>;
exlist:=errorset!*(list(eqtype,mkquote exlist,mkquote varlis),t);
setkorder oldkord;
if errorp exlist then error1()
else return if eqtype eq 'solvelnrsys then t . car exlist
else car exlist
end;
symbolic procedure solvenonlnrchk(exlist,varlis);
% Returns error if equations are nonlinear. (Error used to prevent
% unnecessary computation.)
for each ex in exlist do
for each var in varlis do solvenonlnrchk1(ex,var,varlis);
symbolic procedure solvenonlnrchk1(ex,var,varlis);
if domainp ex then nil
else <<if mvar ex=var
then (if ldeg ex>1 or not freeofl(lc ex,varlis)
then error1())
else if not freeofl(mvar ex,varlis)
and not(mvar ex member varlis)
then error1()
else solvenonlnrchk1(lc ex,var,varlis);
solvenonlnrchk1(red ex,var,varlis)>>;
% ***** Support for one_of and root_of *****.
symbolic procedure mkrootsof(e1,var,mu);
begin scalar x;
x := if idp var then var else 'q_;
if not !*!*norootvarrenamep!*!*
then while smember(x,e1) do
x := intern compress append(explode x,explode '!_);
e1 := prepsq!* e1;
if x neq var then e1 := subst(x,var,e1);
return list list(list !*k2q list('root_of,e1,x),list var,mu)
end;
put('root_of,'psopfn,'root_of_eval);
symbolic procedure root_of_eval u;
begin scalar !*!*norootvarrenamep!*!*,x;
!*!*norootvarrenamep!*!* := t;
x := solveeval u;
if eqcar(x,'list) then x := cdr x else typerr(x,"list");
x := foreach j in x collect if eqcar(j,'equal) then caddr j
else typerr(j,"equation");
if null x then rederr "solve confusion in root_of_eval"
else if null cdr x then return car x else return('one_of . x)
end;
put('root_of,'subfunc,'subrootof);
symbolic procedure subrootof(l,expn);
% Sets up a formal SUB expression when necessary.
begin scalar x,y;
for each j in cddr expn do
if (x := assoc(j,l)) then <<y := x . y; l := delete(x,l)>>;
expn := sublis(l,car expn)
. for each j in cdr expn collect subsublis(l,j);
%to ensure only opr and individual args are transformed;
if null y then return expn;
expn := aconc!*(for each j in reversip!* y
collect list('equal,car j,aeval cdr j),expn);
return if l then subeval expn
else mk!*sq !*p2q mksp('sub . expn,1)
end;
symbolic procedure one_of_p u;
% The use of reval is rather heavy handed, but it works.
(if eqcar(x,'one_of) then x else nil) where x=reval u;
symbolic procedure expand_cases u; makelist expandcase0 cdr u;
symbolic procedure expandcase0 u;
if null u then nil
else if eqcar(car u,'list) then expandcase2 u
else expandcase1 u;
symbolic procedure expandcase1 u;
% One variable case.
if null u then nil
else if not eqcar(car u,'equal) then typerr(car u,"equation")
else (if x
then append(for each j in cdr x collect
list('equal,cadar u,j),
y)
else car u . y)
where x=one_of_p caddar u,y=expandcase1 cdr u;
symbolic procedure expandcase2 u;
% Multiple variable case.
if null u then nil
else if not eqcar(car u,'list) then typerr(car u,"list")
else append(for each j in expandcase22 cdar u collect makelist j,
expandcase2 cdr u);
symbolic procedure expandcase22 u;
if null u then list nil else
if not eqcar(car u,'equal) then typerr(car u,"equation")
else (if x then for each j in cdr x join
for each k in y collect
list('equal,cadar u,j)
. subst(j,cadar u,k)
else for each k in y collect car u . k)
where x=one_of_p caddar u,y=expandcase22 cdr u;
% Rules for solving inverse trigonometrical functions.
fluid '(solve_invtrig_soln!*);
share solve_invtrig_soln!*;
symbolic procedure check_solve_inv_trig(fn,eq,var);
begin scalar x,s;
x := evalletsub2({'(solve_trig_rules),{'simp!*,mkquote {fn,eq}}},
nil);
if errorp x or not ((x := car x) freeof '(asin acos atan))
then return nil;
for each sol in cdr solveeval {mk!*sq subtrsq(x,simp!* {fn,0}),
var} do
if is_solution(sol,eq) then s := caddr sol . s;
if null s then <<solve_invtrig_soln!* := 1;
return t>> % no solution found
else if null cdr s then s := car s % one solution
else s := 'one_of . s;
solve_invtrig_soln!* := {'difference,var,s};
return t
end;
flag('(check_solve_inv_trig),'boolean);
symbolic procedure is_solution(sol,equ);
begin scalar var,s,rhs,result;
var := cadr sol;
rhs := caddr sol;
equ := numr simp!* equ;
if eqcar(rhs,'one_of)
then result := check!-solns(for each s in cdr rhs collect
{{simp!* s},{var},1},
equ,var)
else if eqcar(rhs,'root_of) then result := t
else result := check!-solns({{{simp!* rhs},{var},1}},equ,var);
return if not (result eq 'unsolved) then result else nil
end;
endmodule;
module ppsoln; % Solve surd eqns, mainly by principle of powers method.
% Authors: Anthony C. Hearn and Stanley L. Kameny.
fluid '(!*complex !*msg !*numval !*ppsoln);
global '(bfone!*);
!*ppsoln := t; % Keep this as internal switch.
symbolic procedure solve!-fractional!-power(u,x,var,mu);
% Attempts solution of equation car u**cadr u=x with respect to
% kernel var and with multiplicity mu, where cadr u is a rational
% number.
begin scalar v,w,z;
v := simp!* car u;
w := simp!* cadr u;
z := solvesq(subs2 subtrsq(exptsq(v,numr w),exptsq(x,denr w)),
var,mu);
w := subtrsq(simp('expt . u),x);
z := check!-solns(z,numr w,var);
% return if z eq 'unsolved then list list(list w,nil,mu) else z
return if z eq 'unsolved then mkrootsof(w,var,mu) else z
end;
symbolic procedure principle!-of!-powers!-soln(ex,x1,var,mu);
% Finds solutions of ex=0 by the principle of powers method. Return
% 'unsolved if solutions can't be found.
begin scalar z;
a: if null x1 then return 'unsolved
else if suitable!-expt car x1
and not((z := pr!-pow!-soln1(ex,car x1,var,mu)) eq 'unsolved)
then return z;
x1 := cdr x1;
go to a
end;
symbolic procedure pr!-pow!-soln1(ex,y,var,mu);
begin scalar oldkord,z;
return 'unsolved;
oldkord := updkorder y;
z := reorder ex;
setkorder oldkord;
if ldeg z neq 1 then return 'unsolved;
z := coeflis z;
if length z neq 2 or caar z neq 0
then errach list("solve confused",ex,z);
z := exptsq(quotsq(negsq(cdar z ./ 1),cdadr z ./ 1),
caddr caddr y);
z := solvesq(subs2 addsq(simp!* cadr y,negsq z),var,mu);
z := check!-solns(z,ex,var);
return z
end;
symbolic procedure check!-solns(z,ex,var);
begin scalar x,y,fv,sx,vs;
fv := freevarl(ex,var);
for each z1 in z do
fv := union(fv,union(freevarl(numr caar z1,var),
freevarl(denr caar z1,var)));
fv := delete('i,fv);
% this does only one random setting!!
if fv then for each v in fv do
if not flagp(v,'constant) then
vs := (v . list('quotient,1+random 999,1000)) . vs;
sx := if vs then numr subf(ex,vs) else ex;
while z do
if null cadar z then <<z := nil; x := 'unsolved>>
else if
<<y := numr subf(ex,list(caadar z . mk!*sq caaar z));
null y
% to do multiple random tests, the vs, sx setting and testing
% would be moved here and done in a loop.
or fv and null(y := numr subf(sx,list(caadar z .
mk!*sq subsq(caaar z,vs))))
or null numvalue y>>
then <<x := car z . x; z := cdr z>>
else z := cdr z;
return if null x then 'unsolved else x
end;
symbolic procedure suitable!-expt u;
eqcar(u,'expt) and eqcar(caddr u,'quotient) and cadr caddr u = 1
and fixp caddr caddr u;
symbolic procedure freevarl(ex,var);
<<for each k in allkern list(ex ./ 1) do l := union(l,varsift(k,var));
delete(var,l)>>
where l=if var then list var else nil;
symbolic procedure varsift(a,var);
if atom a then
if not(null a or numberp a or a eq var) then list a else nil
else if get(car a,'dname) then nil
else if car a memq '(arbint arbcomplex) then list a
else if car a eq '!*sq then varsift(prepsq cadr a,var)
else for each c in cdr a join varsift(c,var);
symbolic procedure numvalue u;
% Find floating point value of sf u.
begin scalar !*numval,x,c,cp,p,m;
m := !*msg; !*msg := nil;
!*numval := t;
c := ('i memq freevarl(u,nil));
if (cp := !*complex) then off complex;
x := setdmode('rounded,t); p := precision 10;
if x eq '!:rd!: then x := 'rounded; % <==== to avoid error later
if c then on complex;
!*msg := m;
u := numr simp prepf u;
!*msg := nil;
if c then off complex;
if x then setdmode(x,t) else setdmode('rounded,nil);
if cp then on complex; precision p;
!*msg := m;
return
if eqcar(u,'!:rd!:) and (numvchk(100,z) where z=round!* u)
or eqcar(u,'!:cr!:) and (numvchk(10,z) where z=retag crrl u)
and (numvchk(10,z) where z=retag crim u)
then nil else u
end;
symbolic procedure numvchk(fact,z);
if atom z then fact*abs z<1
else lessp!:(timbf(bfloat fact,abs!: z),bfone!*);
endmodule;
module solvelnr; % Code for solving a general system of linear eqns.
% Authors: Anthony C. Hearn and Eberhard Schruefer.
% Based on code by David R. Stoutemyer modified by Donald R. Morrison.
% Copyright (c) 1993 RAND. All rights reserved.
% The number of equations and the number of unknowns are arbitrary.
% I.e. the system can be under- or overdetermined.
fluid '(!*cramer !*exp !*solvesingular asymplis!* wtl!*);
symbolic procedure solvelnrsys(exlist,varlis);
% This is hook to general solve package. exlist is a list of
% standard forms linear in the kernels of list varlis. Result is a
% tagged standard form for the solutions.
% If the system is inconsistent, then the second element of
% the list returned is NIL, so that !*solvelist2solveeqlist
% gives expr = 0, rather than var = expr.
if null !*cramer then solvelnrsys1(exlist,varlis)
else list list(car w,cadr w and varlis,1)
where w = glnrsolve(exlist,varlis);
symbolic procedure solvelnrsys1(exlist,varlis);
begin integer n; scalar mtrx,rhs,ne,nv;
% Set up coefficient matrix.
n := length varlis;
if (ne := length exlist)<(nv := length varlis)
then for i := 1:(nv-ne) do exlist := nil . exlist
else if ne > nv
then for i := 1:(ne-nv) do varlis := nil . varlis;
for each ex in exlist do
begin scalar row;
for each var in varlis do
if not domainp ex and mvar ex=var
then <<row := !*f2q lc ex . row; ex := red ex>>
else row := !*f2q nil . row;
rhs := list !*f2q negf ex . rhs;
mtrx := reversip!* row . mtrx
end;
mtrx := tp1 solvelnrsolve(mtrx,rhs,n);
if cdr mtrx
then rerror(solve,7,"Invalid linear equation solution");
mtrx := car mtrx;
if ne > nv then for i := 1:(ne-nv) do
<<mtrx := cdr mtrx; varlis := cdr varlis>>;
return list list(mtrx,varlis,1)
end;
symbolic procedure solvelnrsolve(u,v,varno);
% U is a matrix canonical form, v a compatible matrix form and varno
% the number of SOLVE variables.
% Result is the solution to the matrix equation u*y=v. If
% !*solvesingular is non-nil, introduces arbitrary constants if
% necessary. Returns an error if the system represented is
% inconsistent or if !*solvesingular is nil and u is singular.
begin integer n; scalar !*exp,perm,temp;
!*exp := t; n := length u;
if asymplis!* or wtl!*
then <<temp := asymplis!* . wtl!*; asymplis!* := wtl!* := nil>>;
perm := indexlis(1,n);
u := car normmat augment(u,v);
u := bareiss1(u,perm);
if null !*solvesingular and car u<varno
then rerror(solve,8,"SOLVE given singular equations");
if u then u := insertarbconsts(cdr(u),car(u)+1,
function makearbcomplex);
if null u
then if !*solvesingular
then rerror(solve,9,"SOLVE given inconsistent equations")
else rerror(solve,10,
"SOLVE given inconsistent or singular equations");
v := backsub(u,n);
u := rhside(car v,n);
v := cdr v;
if temp
then <<asymplis!* := car temp;
wtl!* := cdr temp;
u := for each j in u collect
for each k in j collect resimp subs2!*(k ./ v)>>
else u := for each j in u collect
for each k in j collect subs2!* cancel(k ./ v);
return restoreperm(u,perm);
end;
symbolic procedure indexlis(m,n);
% M,n are integers. Returns the list (m m+1 m+2 ... n-1 n).
if m<=n then m . indexlis(m+1,n) else nil;
symbolic procedure insertarbconsts(m,zerorow,arbfn);
% M is a matrix standard form, representing a matrix which has been
% row reduced. All elements below the principal diagonal are
% implicitly nil, as are all elements in row ZEROROW and below. It
% is such a form as is returned by SOLVEBAREISS with a non-nil
% second argument. It inserts appropriate arbitrary constants in the
% inhomogeneous portion, and 1's on the main diagonal except for the
% last row, which gets the new determinant of the square submatrix.
% Calls ARBFN to generate arbitrary constants.
begin scalar u, v, newdet; integer n;
n := length(m);
if zerorow<=n then <<
newdet := 1;
u := m;
for i := 1:(zerorow-1) do <<
newdet := multf(newdet, nth(car(u), i));
u := cdr(u) >>;
for i := zerorow:(n-1) do <<
v := pnth(car(u), i);
rplaca(v, 1);
v := cdr(v);
for j := i+1:n do <<rplaca(v,nil); v := cdr(v)>>;
while v do <<rplaca(v,!*k2f lispeval list arbfn);
v := cdr(v)>>;
u := cdr(u) >>;
v := pnth(car(u), n);
rplaca(v, newdet);
v := cdr(v);
while v do <<
rplaca(v, multf(newdet, !*k2f lispeval list arbfn));
v := cdr(v) >> >>;
return m
end;
symbolic procedure restoreperm(u,v);
% U is a list. V is a list of the numbers 1,2,...,length u, permuted.
% Returns a list of the elements of U in the order 1,2,...
begin integer n; scalar x;
x := mkvect(n := length u);
while v do <<putv(x,car v,car u); u := cdr u; v := cdr v>>;
return for i := 1:n collect getv(x,i)
end;
endmodule;
module glsolve; % Routines for solving a general system of linear
% equations using Cramer's rule, realized through
% exterior multiplication.
% Author: Eberhard Schruefer.
% Modifications by: D. Hartley and R.W. Tucker.
% The number of equations and the number of unknowns are arbitrary.
% I.e. the system can be under- or overdetermined.
fluid '(!*solvesingular !*solveinconsistent vars!*);
global '(!!arbint);
global '(inconsistent!*); % Flag to show if equations were inconsistent.
flag('(inconsistent!*),'share);
switch solveinconsistent;
% !*solveinconsistent := t; % Default value.
%symbolic procedure solvelnrsys(u,v);
% This is hook to general solve package. u is a list of polynomials
% (s.f.'s) linear in the kernels of list v. Result is a tagged
% standard form for the solutions.
% If the system is inconsistent, then the second element of
% the list returned is NIL, so that !*solvelist2solveeqlist
% gives expr = 0, rather than var = expr.
% list list(car w,cadr w and v,1) where w = glnrsolve(u,v);
symbolic procedure glnrsolve(u,v);
% glnrsolve(u: list of sf's, v: list of kernels)
% -> (xprs: list of sq's, flg: boolean)
% Adapted by D. Hartley and R.W. Tucker from E. Schruefer's glnrsolve.
% The equations u must be ordered with respect to the kernels v
% If flg is t then xprs is an ordered list of solutions for v.
% If flg is nil then xprs is a list of consistency conditions.
begin scalar arbvars,sgn,x,y,cnds;
inconsistent!* := nil;
while u and null x do
<<x := !*sf2ex(car u,v);
if null x then u := cdr u
else if inconsistency!-chk x then
<<cnds := car u . cnds; x := nil; u := cdr u>>; >>;
if null u then % no consistent non-zero equations
if cnds then
<<inconsistent!* := t; % inconsistent equations
if null !*solveinconsistent then
rerror(solve,5,"SOLVE given inconsistent equations") else
% bump up length of vars!* to fool !*solvelist2solveeqlist
<<if length cnds > 1 then vars!* := t . vars!*;
return list(for each j in cnds collect !*f2q j,nil)>>>>
else % all equations were zero
return list(for each j in v collect !*f2q makearbcomplex(),t);
u := cdr u;
for each j in u do
if y := extmult(!*sf2ex(j,v),x) then
if inconsistency!-chk y then
cnds := numr cancel(lc y ./ lc x) . cnds
else
x := y;
if cnds then
<<inconsistent!* := t;
if null !*solveinconsistent then
rerror(solve,5,"SOLVE given inconsistent equations")
else % bump up length of vars!* to fool !*solvelist2solveeqlist
<<if length cnds > 1 then vars!* := t . vars!*;
return list(for each j in cnds collect !*f2q j,nil)>>>>;
arbvars := for each j in setdiff(v,lpow x) collect
j . makearbcomplex();
if arbvars and null !*solvesingular
then rerror(solve,6,"SOLVE given singular equations");
if null red x then return
list(for each j in v collect
if y := atsoc(j,arbvars) then !*f2q cdr y else nil ./ 1,
t);
sgn := evenp length lpow x;
return list(for each j in v collect
if y := atsoc(j,arbvars) then !*f2q cdr y
else solve!-mkglsol(j,x,sgn := not sgn,arbvars),
t);
end;
symbolic procedure inconsistency!-chk u;
null u or ((nil memq lpow u) and inconsistency!-chk red u);
symbolic procedure solve!-mkglsol(u,v,sgn,arbvars);
% u is the kernel to be solved for, x the exterior product of all
% independent equations, sgn is the current sgn indicator, arbvars
% is an a-list (var . arbvar).
begin scalar s,x,y;
x := nil ./ 1;
y := lpow v;
for each j on red v do
if s := solve!-glsolterm(u,y,j,arbvars)
then x := addsq(cancel(s ./ lc v),x);
return if sgn then negsq x else x
end;
symbolic procedure solve!-glsolterm(u,v,w,arbvars);
begin scalar x,y,sgn;
x := lpow w;
a: if null x then return
if null car y then lc w
else multf(cdr atsoc(car y,arbvars),
if sgn then negf lc w else lc w);
if car x eq u then return nil
else if car x memq v then <<x := cdr x;
if y then sgn := not sgn>>
else if y then return nil
else <<y := list car x; x := cdr x>>;
go to a
end;
%**** Support for exterior multiplication ****
% Data structure is lpow ::= list of variables in exterior product
% lc ::= standard form
symbolic procedure !*sf2ex(u,v);
%Converts standardform u into a form distributed w.r.t. v
%*** Should we check here if lc is free of v?
if null u then nil
else if domainp u or null(mvar u memq v) then list nil .* u .+ nil
else list mvar u .* lc u .+ !*sf2ex(red u,v);
symbolic procedure extmult(u,v);
% Special exterior multiplication routine. Degree of form v is
% arbitrary, u is a one-form.
if null u or null v then nil
else (if x then cdr x .* (if car x then negf subs2multf(lc u,lc v)
else subs2multf(lc u,lc v))
.+ extadd(extmult(!*t2f lt u,red v),
extmult(red u,v))
else extadd(extmult(red u,v),extmult(!*t2f lt u,red v)))
where x = ordexn(car lpow u,lpow v);
symbolic procedure subs2multf(u,v);
% This definition allows for a power substitution that can lead to
% a denominator in subs2. There is a possibility that the power
% substitution won't be made, but there is no example of this yet.
(if denr y neq 1 then x else numr y)
where y=subs2(x ./ 1) where x = multf(u,v);
symbolic procedure extadd(u,v);
if null u then v
else if null v then u
else if lpow u = lpow v then
(lambda x,y; if null x then y else lpow u .* x .+ y)
(addf(lc u,lc v),extadd(red u,red v))
else if ordexp(lpow u,lpow v) then lt u .+ extadd(red u,v)
else lt v .+ extadd(u,red v);
symbolic procedure ordexp(u,v);
if null u then t
else if car u eq car v then ordexp(cdr u,cdr v)
else if null car u then nil
else if null car v then t
else ordop(car u,car v);
symbolic procedure ordexn(u,v);
%u is a single variable, v a list. Returns nil if u is a member
%of v or a dotted pair of a permutation indicator and the ordered
%list of u merged into v.
begin scalar s,x;
a: if null v then return(s . reverse(u . x))
else if u eq car v then return nil
else if u and ordop(u,car v) then
return(s . append(reverse(u . x),v))
else <<x := car v . x;
v := cdr v;
s := not s>>;
go to a
end;
endmodule;
module solvealg; % Solution of equations and systems which can
% be lifted to algebraic (polynomial) systems.
% Author: Herbert Melenk.
% Copyright (c) 1992 The RAND Corporation and Konrad-Zuse-Zentrum.
% All rights reserved.
% August 1992: added material for
% rule set for reduction of trig. polynomial terms to
% elementary expressions in sin and cos,
% constant expressions in sin, cos and constant roots,
% closed form results for trigonometric systems.
% general exponentials.
% avoiding false solutions with surds.
%
% May 1993: better handling of products of exponentials
% with common base,
% additional computation branch for linear parts of
% nonlinear systems.
fluid '(!*exptexpand); % from simp.red
fluid '( system!* % system to be solved
osystem!* % original system on input
uv!* % user supplied variables
iv!* % internal variables
fv!* % restricted variables
kl!* % kernels to be investigated
sub!* % global substitutions
inv!* % global inverse substitutions
depl!* % REDUCE dependency list
!*solvealgp % true if using this module
solvealgdb!* % collecting some data
last!-vars!* % collection of innermost aux variables
const!-vars!* % variables representing constants
!*expli % local switch: explicit solution
groebroots!* % predefined roots from input surds
!*test_solvealg % debugging support
);
fluid '(!*trnonlnr);
% If set on, the modified system and the Groebner result
% or the reason for the failure are printed.
global '(loaded!-packages!*);
switch trnonlnr;
!*solvealgp := t;
% Solvenonlnrsys receives a system of standard forms and
% a list of variables from SOLVE. The system is lifted to
% a polynomial system (if possible) in substituting the
% non-atomic kernels by new variables and appending additonal
% relations, e.g.
% replace add
% sin u,cos u -> su,cu su^2+cu^2-1
% u^(1/3) -> v v^3 - u
% ...
% in a recursive style. If completely successful, the
% system definitely can be treated by Groebner or any
% other polynomial system solver.
%
% Return value is a pair
% (tag . res)
% where "res" is nil or a structure for !*solvelist2solveeqlist
% and "tag" is one of the following:
%
% T a satisfactory solution was generated,
%
% FAILED the algorithm cannot be applied (res=nil)
%
% INCONSISTENT the algorithm could prove that the
% the system has no solution (res=nil)
%
% NIL the complexity of the system could
% be reduced, but some (or all) relations
% remain still implicit.
% rules to be applied locally for converting composite transcendental
% function forms into simpler ones
algebraic <<
solvealg!-rules1:=
{ sin(~alpha + ~beta) => sin(alpha)*cos(beta) + cos(alpha)*sin(beta),
cos(~alpha + ~beta) => cos(alpha)*cos(beta) - sin(alpha)*sin(beta),
sin(~n*~alpha) => sin(alpha)*cos((n-1)*alpha)
+ cos(alpha)*sin((n-1)*alpha) when fixp n,
cos(~n*~alpha) => cos(alpha)*cos((n-1)*alpha)
- sin(alpha)*sin((n-1)*alpha) when fixp n,
sin(~alpha)**2 => 1 - cos(alpha)**2,
sinh(~alpha+~beta) => sinh(alpha)*cosh(beta) + cosh(alpha)*sinh(beta),
cosh(~alpha+~beta) => cosh(alpha)*cosh(beta) + sinh(alpha)*sinh(beta),
sinh(~n*~alpha) => sinh(alpha)*cosh((n-1)*alpha)
+ cosh(alpha)*sinh((n-1)*alpha) when fixp n,
cosh(~n*~alpha) => cosh(alpha)*cosh((n-1)*alpha)
+ sinh(alpha)*sinh((n-1)*alpha) when fixp n,
sinh(~alpha)**2 => cosh(alpha)**2 - 1};
solvealg!-rules2:=
{ tan(~alpha) => sin(alpha)/cos(alpha),
cot(~alpha) => cos(alpha)/sin(alpha),
tanh(~alpha) => sinh(alpha)/cosh(alpha),
coth(~alpha) => cosh(alpha)/sinh(alpha) } ;
solvealg!-rules3:=
{ sin(~alpha)**2 => 1 - cos(alpha)**2,
sinh(~alpha)**2 => cosh(alpha)**2 - 1};
% Artificial operator for matching powers in a
% product.
operator my!-expt;
solvealg!-rules4:=
{ my!-expt(~a,~b)*my!-expt(a,~c) => my!-expt(a,b+c),
my!-expt(~a,~b)*a => my!-expt(a,b+1),
my!-expt(~a,~b)*a => my!-expt(a,b+1)
% my!-expt(~a,~b)/my!-expt(a,~c) => my!-expt(a,b-c)
};
>>;
symbolic procedure solvenonlnrsys(sys,uv);
% interface to algebraic system solver.
% factorize the system and collect solutions.
% After factoring we resimplify with *exptexpand off
% in order to have exponentials to one basis
% collected.
begin scalar q,r,s,tag,!*exptexpand;
s:='(nil);
if solve!-psysp(sys,uv) then
s:={sys} else
for each p in sys do
<<r:= nil;
for each q in cdr fctrf p do
for each u in s do r:= (car q.u).r;
s:=r;
>>;
tag:='failed; r:=nil;
for each u in s do
<<% collect exponentials with same base.
u := solvenonlnrcollectexpt u;
q:=solvenonlnrsys1(u,uv);
if eqcar(q,'failed) then
q:=solvenonlnrsyssep(u,uv);
if eqcar(q,'failed) then
q:=solvenonlnrsyslin(u,uv,nil);
if eqcar(q,'not) then
q:=solvenonlnrsyslin(u,uv,t);
if eqcar(q,'not) then q:='(failed);
if car q and car q neq 'failed then tag:=car q;
q:= if car q neq 'failed then cdr q else
for each j in u collect {{j ./ 1},nil,1};
r:=union(q,r);
>>;
return tag.r
end;
symbolic procedure solvenonlnrcollectexpt u;
% u is a list of standard forms. Reform these
% such that products of exponentials with same basis
% are collected.
if not smemq('expt,u) then u else
<<eval'(let0 '(solvealg!-rules4));
u:=for each q in u collect
numr simp subst('expt,'my!-expt,
reval prepf subst('my!-expt,'expt,q));
eval'(clearrules '(solvealg!-rules4));
u>>;
symbolic procedure solvenonlnrsyslin(eqs,vars,mode);
% Eqs is a system of equations (standard forms,
% implicitly equated to zero); this routine tries
% to reduce the system recursively by separation,
% if one variable occurs in one equation only linearly.
% Mode=NIL: simple version: only pure linear variables
% are substituted.
% T: extended version: replacing variables with
% degree 1 and potentially complicated
% coefficients.
% Returns solution or
% '(not) if not applicable
% '(failed) if applicable but solution failed.
begin scalar d,e,e1,n,s,q,x,v,w,w1,neqs,nvars;
v:=vars;
var_loop:
if null v then return '(not);
x:=car v; v:=cdr v;
w:=eqs;
eqn_loop:
if null w then goto var_loop;
e:=car w; w:=cdr w;
if null e then goto eqn_loop;
if domainp e then return '(inconsistent);
e1:= reorder e where kord!*={x};
if not mvar e1 =x or ldeg e1>1 or
smemq(x,d:=lc e1) or smemq(x,n:=red e1) then goto eqn_loop;
if not mode then
<<w:=nil;
for each y in vars do w:=w or smemq(y,d);
if w then return '(not); >>;
% linear form found: n*x+d=0. This is basis for a solution
% x=-n/d. In a second branch the case {n=0,d=0} has to
% be considered if n and d are not constants.
n := reorder n; d:=reorder d;
% Step 1: substitute in remaining equations, solve
% and add linear formula to result.
s:= quotsq(negf n ./ 1, d ./ 1);
neqs := for each eqn in delete(e,eqs) join
<<q:=numr subf(eqn,{x.prepsq s}); if q then {q}>>;
nvars:=for each y in delete(x,vars) join
if smemq(y,neqs) then {y};
w:= if null neqs then '(t (nil nil 1)) else
if null nvars then '(inconsistent) else
if cdr neqs then solvenonlnrsys(neqs,nvars)
else solvenonlnrsysone(car neqs,car nvars);
if car w eq 'failed then return w;
w:=add!-variable!-to!-tagged!-solutions(x,s,w);
% Step 2: add an eventual solution for n=0,d=0;
if domainp d or not mode then return w;
w1:=solvenonlnrsys(n.d.eqs,vars);
return merge!-two!-tagged!-solutions(w,w1);
end;
symbolic procedure solvenonlnrsysone(f,x);
% equation system has been reduced to one. Solve
% it using solvesq.
begin scalar q,w;
w:=solvesq(f ./ 1,x,1);
if null w then return '(inconsistent);
% if not smemq('root_of,w) then goto ret;
% % here we try to find out whether a root_of
% % expression is a useful information or whether
% % it is simply an echo of the input.
% if cdr w then goto ret; % multiple branches: good.
% q := prepsq caar car w;
% if not eqcar(q,'root_of) % not on top level: good.
% then goto ret;
% q:=subst(x,caddr q,cadr q);
% if f = numr simp q then return '(failed);
%ret:
return t.w;
end;
symbolic procedure add!-variable!-to!-tagged!-solutions(x,s,y);
% Y is a tagged solution. Add equation x=s to all members.
if eqcar(y,'inconsistent) then y else
if null y or null cdr y then {t,{{s},{x},1}} else
car y . for each q in cdr y collect
{s . car q,x . cadr q,caddr q};
symbolic procedure merge!-two!-tagged!-solutions(w1,w2);
% w1 and w2 are tagged solution sets. Merge these and
% eliminated inconsistent cases.
if car w1='failed or car w2='failed then '(failed) else
if car w1='inconsistent then w2 else
if car w2='inconsistent then w1 else
car w1 . append(cdr w1,cdr w2);
symbolic procedure solvenonlnrsyssep(eqs,vars);
% Eqs is a system of equations (standard forms,
% implicitly equated to zero); this routine tries
% to reduce the system recursively by separation,
% if one variable occurs only in one equation.
begin scalar y,r,s,r0,u,w;
if null vars then return '(failed) else
if null cdr eqs then
<<if not smember(car vars,car eqs) then
return solvenonlnrsyssep(eqs,cdr vars);
r:=solvesq(!*f2q car eqs,car vars,1);
return if r then 't.r else '(failed);
>>;
for each x in vars do if null y then
<<r:=nil;
for each u in eqs do if smember(x,u) then
r:=u.r;
if r and null cdr r then y:=x;
>>;
if null y then return '(failed);
r:=car r;
s:=solvenonlnrsys(delete(r,eqs),delete(y,vars));
if car s='failed then return s else s:=cdr s;
u:=for each s0 in s join
<<
w:=for each q in pair(cadr s0,car s0) join
if not smemq('root_of,cdr q) then
{car q.prepsq cdr q};
r0:=subf(r,w);
r0:=solvesq(r0,y,caddr s0);
for each r1 in r0 collect
{caar r1. car s0,y.cadr s0,caddr r1}
>>;
return t.u;
end;
symbolic procedure solve!-psysp(s,uv);
% T if s is a pure polynomial system.
null s or (solve!-psysp1(car s,uv) and solve!-psysp(cdr s,uv));
symbolic procedure solve!-psysp1(f,uv);
domainp f or
((member(mvar f,uv) or solve!-psysp2(mvar f,uv))
and solve!-psysp1(lc f,uv) and solve!-psysp1(red f,uv));
symbolic procedure solve!-psysp2(v,uv);
% t if there is no interaction between v and uv.
null uv or (not smember(car uv,v) and solve!-psysp2(v,cdr uv));
symbolic procedure solvenonlnrsys1(system!*,uv!*);
% solve one system.
begin scalar r,rules;
osystem!* := system!*;
if solvealgtrig0 system!* then rules:='(solvealg!-rules1);
if smemq('tan,system!*) or smemq('cot,system!*) or
smemq('tanh,system!*) or smemq('coth,system!*) then
rules:='solvealg!-rules2.rules;
r := evalletsub2({rules,'(solvenonlnrsyspre)},nil);
if errorp r then return '(failed) else system!* := car r;
r := solvenonlnrsys2();
return r;
end;
symbolic procedure solvenonlnrsyspre();
(for each p in system!* collect numr simp prepf p)
where dmode!* = nil;
symbolic procedure solvenlnrsimp(u);
% a prepsq including resimplification with additional rules.
% begin scalar r;
% r := evalletsub2({'(solvealg!-rules3),
% {'simp!* ,mkquote u}},nil);
% if errorp r then error(99,list("error during postprocessing simp"));
% return car r;
% end;
simp!* u;
symbolic procedure solvenonlnrsys2();
% Main driver. We need non-local exits here
% because of possibly hidden non algebraic variable
% dependencies.
if null !*solvealgp then system!*:='(failed) else % against recursion.
(begin scalar iv!*,kl!*,inv!*,fv!*,r,!*solvealgp,solvealgdb!*;
scalar last!-vars!*,groebroots!*,const!-vars!*,sub!*;
% hiding dmode because exponentials need integers.
for each f in system!* do solvealgk0
(if dmode!* then numr subf(f,nil) where dmode!*=nil else f);
if !*trnonlnr then print list("original kernels:",kl!*);
if null cdr system!* then
if (smemq('sin,system!*)or smemq('cos,system!*)) and
(r:=solvenonlnrtansub(prepf car system!*,car uv!*))
then return solvenonlnrtansolve(r,car uv!*)
else if (smemq('sinh,system!*)or smemq('cosh,system!*)) and
(r:=solvenonlnrtanhsub(prepf car system!*,car uv!*))
then return solvenonlnrtanhsolve(r,car uv!*);
if atom (errorset('(solvealgk1),!*trnonlnr,nil)) where dmode!*=nil
then return (system!*:='(failed));
system!*:='list.for each p in system!* collect prepf p;
if not('groebner memq loaded!-packages!*)
then load!-package 'groebner;
for each x in iv!* do if not member(x,last!-vars!*) then
for each y in last!-vars!* do depend1(x,y,t);
iv!* := sort(iv!*,function (lambda(a,b);depends(a,b)));
if !*trnonlnr then
<< prin2t "Entering Groebner for system";
writepri(mkquote system!*,'only);
writepri(mkquote('list.iv!*), 'only);
>>;
r := list(system!*,'list.iv!*);
r := groesolveeval r;
if !*trnonlnr then
<< prin2t "leaving Groebner with intermediate result";
writepri(mkquote r,'only);
terpri(); terpri();
>>;
if 'sin memq solvealgdb!* then r:=solvealgtrig2 r;
if 'sinh memq solvealgdb!* then r:=solvealghyp2 r;
r:= if r='(list) then '(inconsistent) else solvealginv r;
system!* := r; % set value aside
return r;
end) where depl!*=depl!* ;
symbolic procedure solvealgk0(p);
% Extract new top level kernels from form p.
if domainp p then nil else
<<if not member(mvar p,kl!*)
and not member(mvar p,iv!*)
then kl!*:=mvar p.kl!*;
solvealgk0(lc p);
solvealgk0(red p)>>;
symbolic procedure solvealgk1();
% Process all kernels in kl!*. Note that kl!* might
% change during processing.
begin scalar k,kl0,kl1;
k := car kl!*;
while k do
<<kl0 := k.kl0;
solvealgk2(k);
kl1 := kl!*; k:= nil;
while kl1 and null k do
if not member(car kl1,kl0) then k:=car kl1
else kl1:=cdr kl1;
>>;
end;
symbolic procedure solvealgk2(k);
% Process one kernel.
(if member(k,uv!*) then solvealgvb0 k and (iv!*:= k.iv!*) else
if atom k then t else
if eq(car k,'expt) then solvealgexpt(k,x) else
if memq(car k,'(sin cos tan cot)) then
solvealgtrig(k,x) else
if memq(car k,'(sinh cosh tanh coth)) then
solvealghyp(k,x) else
if null x then t else
solvealggen(k,x)
) where x=solvealgtest(k);
symbolic procedure solvealgtest(k);
% Test if the arguments of a composite kernel interact with
% the variables known so far.
if atom k then nil else solvealgtest0(k);
symbolic procedure solvealgtest0(k);
% Test if kernel k interacts with the known variables.
solvealgtest1(k,iv!*) or solvealgtest1(k,uv!*);
symbolic procedure solvealgtest1(k,kl);
% list of those kernels in list kl, which occur somewhere
% in the composite kernel k.
if null kl then nil else
if member(k,kl) then list k else
if atom k then nil else
union(if smember(car kl,cdr k) then list car kl else nil,
solvealgtest1(k,cdr kl));
symbolic procedure solvealgvb k;
% Restricted variables are those which might establish
% non-algebraic relations like e.g. x + e**x. Test k
% and add it to the list.
fv!* := append(solvealgvb0 k,fv!*);
symbolic procedure solvealgvb0 k;
% test for restricted variables.
begin scalar ak;
ak := allkernels(k,nil);
if intersection(ak,iv!*) or intersection(ak,fv!*) then
error(99,list("transcendental variable dependency from",k));
return ak;
end;
symbolic procedure allkernels(a,kl);
% a is an algebraic expression. Extract all possible inner
% kernels of a and collect them in kl.
if numberp a then kl else
if atom a or a member uv!*
then if not member(a,kl) then a.kl else kl else
<<for each x in cdr a do
kl := allkernels1(numr s,allkernels1(denr s,kl))
where s=simp x;
kl>>;
symbolic procedure allkernels1(f,kl);
if domainp f then kl else
<<if not member(mvar f,kl) then
kl:=allkernels(mvar f,mvar f . kl);
allkernels1(lc f, allkernels1(red f,kl)) >>;
symbolic procedure solvealgexpt(k,x);
% kernel k is an exponential form.
( if eqcar(m,'quotient) and fixp caddr m then
if cadr m=1 then solvealgrad(cadr k,caddr m,x)
else solvealgradx(cadr k,cadr m,caddr m,x)
else if null x then solvealgid k
else if ((null intersection(w,uv!*) and
null intersection(w,iv!*) and
null intersection(w,fv!*))
where w=allkernels(m,nil))
then solvealggen(k,x)
else solvealgexptgen(k,x)
) where m = caddr k;
symbolic procedure solvealgexptgen(k,x);
% Kernel k is a general exponentiation u ** v.
begin scalar bas,xp,nv;
bas := cadr k; xp := caddr k;
if solvealgtest1(xp,uv!*) then return solvealgexptgen1(k,x)
else if solvealgtest1(bas,uv!*) then return solvealggen(k,x);
% remaining case: "constant" exponential expression to
% replaced by an id for syntatical reasons
nv := '(
% old kernel
( (expt !&alpha n))
% new variable
( !&beta)
% substitution
( ((expt !&alpha n) . !&beta) )
% inverse
( (!&beta (expt !&alpha n) !& ))
% new equations
nil
);
nv:=subst(bas,'!&alpha,nv);
nv:=subst(solve!-gensym(),'!&beta,nv);
nv:=subst(xp,'n,nv);
return solvealgupd(nv,nil);
end;
symbolic procedure solvealgexptgen1(k,x);
% Kernel k is a general exponentiation u ** v.
% where v is an expression in a solution variable, u
% is constant. Transform all kernels with same basis
% and compatible exponent to common exponent denominator
% form.
begin scalar bas,xp,xpl,nv,q,r,nk,sub;
bas := cadr k; xp := caddr k;
% collect all exponentials with this basis.
xpl:={(1 ./ 1).xp};
for each k in kl!* do
if eqcar(k,'expt) and cadr k=bas and
<<q:=simp{'quotient,r:=caddr k,xp};
fixp numr q and fixp denr q>> then
<<kl!*:=delete(k,kl!*); xpl:=(q.r).xpl>>;
% compute common denominator.
q:=1; for each e in xpl do q:=lcm(q,denr car e);
% the new artificial kernel.
nk:=reval{'expt,bas,{'quotient,xp,q}};
sub := for each e in xpl collect
{'expt,bas,cdr e}.
{'expt,nk,numr car e * q/denr car e};
system!*:=sublis(sub,system!*);
return solvealggen(nk,x);
end;
symbolic procedure solvealgradx(x,m,n,y);
% error(99,"forms e**(x/2) not yet implemented");
solvealgexptgen1({'expt,x,{'quotient,m,n}},y);
symbolic procedure solvealgrad(x,n,y);
% k is a radical exponentiation expression x**1/n.
begin scalar nv,m,!β
!&beta := solve!-gensym();
nv:= '(
% old kernel
( (expt !&alpha (quotient 1 !&n)))
% new variable
( !&beta)
% substitution
( ((expt !&alpha (quotient 1 !&n)) . !&beta) )
% inverse
% ( (!&beta !&alpha (expt !& !&n)) )
nil
% new equation
( (difference (expt !&beta !&n) !&alpha) )
);
m := list('!&alpha.x,'!&beta.!&beta,'!&n.n);
nv := subla(m,nv);
% prepare roots for simple surds.
if null y or y={x} then groebroots!* :=
({'plus,{'expt,!&beta,n},reval{'minus,x}}
.{{{'equal,!&beta,{'expt,x,{'quotient,1,n}}}}}).groebroots!*;
return solvealgupd(nv,y);
end;
symbolic procedure solvealgtrig0(f);
% examine if sin/cos identies must be applied.
begin scalar args,r,c;
args :=for each a in solvealgtrig01(f,nil) collect
(union(kernels numr q,kernels denr q) where q=simp a);
while args do
<<c:=car args;args:=cdr args;
for each q in args do r:=r or intersection(c,q)>>;
return r;
end;
symbolic procedure solvealgtrig01(f,args);
if atom f then args else
if memq(car f,'(sin cos tan cot sinh cosh tanh coth)) then
if constant_exprp cadr f then args else union({cadr f},args)
else solvealgtrig01(cdr f,solvealgtrig01(car f,args));
algebraic <<
operator p_sign;
let p_sign(~x) = if sign(x)=0 then 1 else sign(x);
>>;
symbolic procedure solvealgtrig(k,x);
% k is a trigonometric function call.
begin scalar nv,m,s,!&alpha,!β
solvealgdb!* := union('(sin),solvealgdb!*);
if x then
if cdr x then
error(99,"too many variables in trig. function")
else x := car x;
solvealgvb k;
nv := '(
% old kernels
( (sin !&alpha)(cos !&alpha)(tan !&alpha)(cot !&alpha) )
% new variables
( (sin !&beta) (cos !&beta) )
% substitutions
( ((sin !&alpha) . (sin !&beta))
((cos !&alpha) . (cos !&beta))
%%% these should be handled now by the ruleset.
%%% ((tan !&alpha) . (quotient (sin !&beta) (cos !&beta)))
%%% ((cot !&alpha) . (quotient (cos !&beta) (sin !&beta)))
)
% inverses
(
((sin !&beta)
(cond ((and !*expli (test_trig))
'(!&loc (p_sign (!&!& !&))))
(t '(!&x (!&!& (root_of (equal (sin !&alpha)
!&) !&x))))))
((cos !&beta)
(cond ((and !*expli (test_trig))
'(!&x (plus (!&!& (times !&loc (acos !&)))
(times 2 pi !&arb))))
(t '(!&x (!&!& (root_of (equal (cos !&alpha)
!&) !&x))))))
)
% new equation
( (plus (expt (sin !&beta) 2)(expt (cos !&beta) 2) -1) )
);
% invert the inner expression.
s := if x then solvealginner(cadr k,x) else 1;
!&beta := solve!-gensym();
m := list('!&alpha . (!&alpha:=cadr k),
'!&beta . !&beta,
'!&loc . solve!-gensym(),
'!&arb . {'arbint,!!arbint:=!!arbint+1},
'!&x . x,
'!&!& . s);
nv:=sublis!-pat(m , nv);
if x then last!-vars!*:=
append(last!-vars!*,{{'sin,!&beta},{'cos,!&beta}})
else const!-vars!* :=
append(const!-vars!*,{{'sin,!&beta}.{'sin,!&alpha},
{'cos,!&beta}.{'cos,!&alpha}});
return solvealgupd(nv,nil);
end;
symbolic procedure solvealghyp(k,x);
% k is a hyperbolic function call.
begin scalar nv,m,s,!&alpha,!β
solvealgdb!* := union('(sinh),solvealgdb!*);
if x then
if cdr x then
error(99,"too many variables in hyp. function")
else x := car x;
solvealgvb k;
nv := '(
% old kernels
( (sinh !&alpha)(cosh !&alpha)(tanh !&alpha)(coth !&alpha) )
% new variables
( (sinh !&beta) (cosh !&beta) )
% substitutions
( ((sinh !&alpha) . (sinh !&beta))
((cosh !&alpha) . (cosh !&beta))
)
% inverses
(
((sinh !&beta)
(cond ((and !*expli (test_hyp))
'(!&loc (p_sign (!&!& !&))))
(t '(!&x (!&!& (root_of (equal (sinh !&alpha)
!&) !&x))))))
((cosh !&beta)
(cond ((and !*expli (test_hyp))
'(!&x (plus (!&!& (times !&loc (acosh !&)))
(times 2 pi i !&arb))))
(t '(!&x (!&!& (root_of (equal (cosh !&alpha)
!&) !&x))))))
)
% new equation
( (plus (minus (expt (sinh !&beta) 2))(expt (cosh !&beta) 2) -1) )
);
% invert the inner expression.
s := if x then solvealginner(cadr k,x) else 1;
!&beta := solve!-gensym();
m := list('!&alpha . (!&alpha:=cadr k),
'!&beta . !&beta,
'!&loc . solve!-gensym(),
'!&arb . {'arbint,!!arbint:=!!arbint+1},
'!&x . x,
'!&!& . s);
nv:=sublis!-pat(m , nv);
if x then last!-vars!*:=
append(last!-vars!*,{{'sinh,!&beta},{'cosh,!&beta}})
else const!-vars!* :=
append(const!-vars!*,{{'sinh,!&beta}.{'sinh,!&alpha},
{'cosh,!&beta}.{'cosh,!&alpha}});
return solvealgupd(nv,nil);
end;
symbolic procedure solvealgtrig2 u;
% r is a result from goesolve; remove trivial relations
% like sin^2 + cos^2 = 1.
begin scalar r,w,op,v,rh;
for each s in cdr u do
<<w := nil;
for each e in s do
% delete "sin u = sqrt(-cos u^2+1)" etc
if eqcar(e,'equal) and
(eqcar(cadr e,'sin) or eqcar(cadr e,'cos)) and
(op := caadr e) and (v := cadr cadr e) and
member(if eqcar(rh:=caddr e,'!*sq!*) then cadr rh else rh,
subst({if op='sin then 'cos else 'sin,v},'!-form!-,
'((minus (sqrt (plus (minus (expt !-form!- 2)) 1)))
(sqrt (plus (minus (expt !-form!- 2)) 1)))))
then nil
else w:=e.w;
w := reverse w;
if not member(w,r) then r:=w.r;
>>;
return 'list . reverse r;
end;
symbolic procedure solvealghyp2 u;
% r is a result from goesolve; remove trivial relations
% like cosh^2 - sinh^2 = 1.
begin scalar r,w,op,v,rh;
for each s in cdr u do
<<w := nil;
for each e in s do
% delete "sinh u = sqrt(cosh u^2-1)","cosh u = sqrt(sinh u^2+1)"
if eqcar(e,'equal) and
(eqcar(cadr e,'sinh) or eqcar(cadr e,'cosh)) and
(op := caadr e) and (v := cadr cadr e) and
member(if eqcar(rh:=caddr e,'!*sq!*) then cadr rh else rh,
if op='sinh then
subst({'cosh,v},'!-form!-,
'((minus (sqrt (plus (expt !-form!- 2) 1)))
(sqrt (plus (expt !-form!- 2) 1))))
else
subst({'sinh,v},'!-form!-,
'((minus (sqrt (plus (expt !-form!- 2) (minus 1))))
(sqrt (plus (expt !-form!- 2) (minus 1))))))
then nil
else w:=e.w;
w := reverse w;
if not member(w,r) then r:=w.r;
>>;
return 'list . reverse r;
end;
symbolic procedure solvealggen(k,x);
% k is a general function call; processable if SOLVE
% can invert the function.
begin scalar nv,m,s;
if cdr x then
error(99,"too many variables in function expression");
x := car x;
solvealgvb k;
nv := '(
% old kernels
( !&alpha )
% new variables
( !&beta )
% substitutions
( ( !&alpha . !&beta) )
% inverses
(( !&beta '(!&x (!&!& !&))))
% new equation
nil);
% invert the kernel expression.
s := solvealginner(k,x);
m := list('!&alpha . k,
'!&beta . solve!-gensym(),
'!&x . x,
'!&!& . s);
nv:=sublis!-pat(m , nv);
return solvealgupd(nv,nil);
end;
symbolic procedure solvealgid k;
% k is a "constant" kernel, however in a syntax unprocessable
% for Groebner (e.g. expt(a/2)); replace temporarily
begin scalar nv,m,s;
nv := '(
% old kernels
( !&alpha )
% new variables
( )
% substitutions
( ( !&alpha . !&beta) )
% inverses
(( !&beta nil . !&alpha))
% new equation
nil);
% invert the kernel expression.
m := list('!&alpha . k, '!&beta . solve!-gensym());
nv:=sublis(m , nv);
return solvealgupd(nv,nil);
end;
symbolic procedure solvealginner(s,x);
<<s := solveeval list(list ('equal,s,'!#), list('list,x));
s := reval cadr s;
if not eqcar(s,'equal) or not equal(cadr s,x) then
error (99,"inner expression cannot be inverted");
{'lambda,'(!#),caddr s}>>;
symbolic procedure solvealgupd(u,innervars);
% Update the system and the structures.
begin scalar ov,nv,sub,inv,neqs;
ov := car u; u := cdr u;
nv := car u; u := cdr u;
sub:= car u; u := cdr u;
inv:= car u; u := cdr u;
neqs:=car u; u := cdr u;
for each x in ov do kl!*:=delete(x,kl!*);
for each x in innervars do
for each y in nv do depend1(y,x,t);
sub!* := append(sub,sub!*);
iv!* := append(nv,iv!*);
inv!* := append(inv,inv!*);
system!* := append(
for each u in neqs collect
<<u:= numr simp u; solvealgk0 u; u>>,
for each u in system!* collect numr subf(u,sub) );
return t;
end;
symbolic procedure solvealginv u;
% Reestablish the original variables, produce inverse
% mapping and do complete value propagation.
begin scalar v,r,s,m,lh,rh,y,z,tag,sub0,sub,!*expli,noarb,arbs;
scalar abort;
integer n;
sub0 := for each p in sub!* collect (cdr p.car p);
tag := t;
r := for each sol in cdr u join
<<sub := sub0; abort := v:= r:= s:= noarb :=arbs :=nil;
if !*test_solvealg then
<<prin2t "================================";
prin2t const!-vars!*;
prin2t " next basis:";
writepri(mkquote sol,'only);
>>;
for each eqn in reverse cdr sol do
<<lh := cadr eqn; rh := subsq(simp!* caddr eqn,s);
if !*test_solvealg then
writepri(mkquote {'equal,lh,prepsq rh},'only);
!*expli:=member(lh,iv!*);
% look for violated constant relations.
if (y:=assoc(lh,const!-vars!*)) and constant_exprp prepsq rh
and numr subtrsq(rh,simp cdr y) then abort := t;
if not !*expli then noarb := t;
if !*expli and not noarb then
<< % assign value to free variables;
for each x in uv!* do
if solvealgdepends(rh,x) and not member(x,fv!*)
and not member(x,arbs) then
<<z := mvar makearbcomplex();
y := z; v := x . v; r := simp y . r;
% rh := subsq(rh,list(x.y));
% s := (x . y) . s;
arbs:=x.arbs;
>>;
if not smemq('root_of,rh) then
s:=(lh.prepsq rh).s
else fv!*:=lh.fv!*;
>>;
if (m:=assoc(lh,inv!*))then
<<m:=cdr m; lh :=car m; kl!* := eqn;
if eqcar(lh,'cond) or eqcar(lh,'quote) then
lh:=car(m:=eval lh);
rh:=solvenlnrsimp subst(prepsq rh,'!&,cadr m)>>;
% if local variable, append to substitution.
if not member(lh,uv!*) and !*expli then
<< sub:=append(sub,{lh .(z:=prepsq subsq(rh,sub))});
if smember(lh,r) then r:=subst(z,lh,r)
>>;
% append to the final output.
if (member(lh,uv!*) or not !*expli)
% inhibit repeated same values.
and not<< z:=subsq(rh,sub);
n:=length member(z,r);
n>0 and lh=nth(v,length v + 1 - n)>>
then <<r:=z.r; v:=lh.v;>>;
>>;
% Classify result.
% for each x in uv!* do
% if tag and not member(x,v) and smember(x,r) then tag:=nil;
if !*test_solvealg then
if abort then yesp "ABORTED" else
<<prin2t " --------> ";
writepri(mkquote ('list .for each u in pair(v,r) collect
{'equal,car u,prepsq cdr u}) ,'only);
prin2t "================================";
yesp "continue?";
>>;
if not abort then {reverse r . reverse v}
>>;
return solvealg!-verify(tag,r);
end;
symbolic procedure solvealgdepends(u,x);
% inspect u for explicit dependency of x, being careful for
% root_of subexpressions.
if u=x then t else if atom u then nil else
if eqcar(u,'root_of) then
if x=caddr u then nil else solvealgdepends(cadr u,x) else
solvealgdepends(car u,x) or solvealgdepends(cdr u,x);
symbolic procedure test_trig();
begin scalar lh,rh,r;
lh := cadr kl!*; rh:= caddr kl!*;
if member(lh . nil, solvealgdb!*) then return nil;
r := not !*complex and not smemq('i,kl!*) and
not smemq('!:gi!:,kl!*) and not smemq('!:cr!:,kl!*) and
not smemq('root_of,kl!*);
if not r then solvealgdb!* :=
append(solvealgdb!*,{('sin.cdr lh).nil,('cos.cdr lh).nil});
return r;
end;
symbolic procedure test_hyp();
begin scalar lh,rh,r;
lh := cadr kl!*; rh:= caddr kl!*;
if member(lh . nil, solvealgdb!*) then return nil;
r := not !*complex and not smemq('i,kl!*) and
not smemq('!:gi!:,kl!*) and not smemq('!:cr!:,kl!*) and
not smemq('root_of,kl!*);
if not r then solvealgdb!* :=
append(solvealgdb!*,{('sinh.cdr lh).nil,('cosh.cdr lh).nil});
return r;
end;
fluid '(!*solvealg_verify);
% the idea of the following procedure is to exclude isolated
% solutions which give a substantial residue when subsituted
% into the equation system under "on rounded"; as long as no
% good criterion for a residue to be small has been found, this
% step is disabled.
symbolic procedure solvealg!-verify(tag,r);
<<if !*rounded and !*solvealg_verify then
begin scalar min,s,x,cmpl,!*msg;
% exclude solutions with a residue substantially
% above the minimum of all nonzero residues.
cmpl:=!*complex;
if not cmpl then setdmode('complex,!*complex:=t);
s := for each u in r collect solvealg!-verify1 u.u;
min:=simp'(quotient 1 100);
r:= for each u in s join
if null car u or minusf numr subtrsq(car u,min) then {cdr u};
if not cmpl then
<<setdmode('complex,nil); !*complex:=nil>>;
end;
tag . for each q in r collect car q . cdr q . list 1
>>;
symbolic procedure solvealg!-verify1 s;
% verify solution s for the current equation system.
begin scalar sub,nexpli,x,y,sys,sum,fail;
sub:= for each u in pair(cdr s,car s) collect if not nexpli then
<<y:=prepsq cdr u;
if not (domainp y or constant_exprp y) then nexpli:=t;
car u.y>>;
% a non explicit solution cannot be tested.
if nexpli then return nil;
sum := nil ./ 1;
for each u in osystem!* do if not fail then
<<x:=subf(u,sub);
if domainp numr x then
sum:=addsq(sum,absf numr x ./ denr x)
else fail := t;
>>;
return if fail then nil else sum;
end;
symbolic procedure sublis!-pat(a,u);
% like sublis, but replace lambda expressions by matching their
% actual arguments.
begin scalar v;
if atom u then return
<<v:=assoc(u,a); if v then sublis!-pat(a,cdr v) else u>>;
v:=assoc(car u,a);
if v and (v:=cdr v) and eqcar(v,'lambda) then return
sublis!-pat((caadr v.cadr u).a,caddr v);
return sublis!-pat1(a,u);
end;
symbolic procedure sublis!-pat1(a,l);
if null l then nil else
if atom l then sublis!-pat(a,l) else
sublis!-pat(a,car l) . sublis!-pat1(a,cdr l);
%----------------------------------------------------------------
% section for single trigonometric polynomials
%----------------------------------------------------------------
symbolic procedure solvenonlnrtansub(p,x);
% Perform tangent substitution.
if not smemq('sin,p) and not smemq('cos,p) then
if smemq(x,p) then nil else nil.p
else if car p='cos then
if smemq(x,cdr p) then (cdr p).
'(quotient (difference 1(expt tg!- 2)) (plus 1(expt tg!- 2)))
else nil.p
else if car p='sin then
if smemq(x,cdr p) then (cdr p).
'(quotient (times 2 tg!-) (plus 1(expt tg!- 2)))
else nil.p
else
(if ca and cd and
(car ca = car cd or null car ca or null car cd)
then (car ca or car cd).(cdr ca.cdr cd))
where ca=solvenonlnrtansub(car p,x),
cd=solvenonlnrtansub(cdr p,x);
symbolic procedure solvenonlnrtansolve(u,x);
begin scalar p,v,s,z,r,si,y;
v:=caar u; u:= prepf numr simp cdr u;
s:=solveeval {u,'tg!-};
si:=solveeval {{'equal,v,'!&!&},x};
for each q in cdr s do
<<z:=reval caddr q;
z:=reval sublis(solvenonlnrtansolve1 z,z);
for each sii in cdr si do
<<y:=simp subeval1({'!&!& . {'times,2,{'atan,z}}},caddr sii);
r:=union({{{y},{x},1}},r);
>>;
>>;
return t.r;
end;
symbolic procedure solvenonlnrtansolve1 u;
% Find all cos**2.
if atom u then nil else
if car u='expt and eqcar(cadr u,'cos) and caddr u=2 then
{u . {'difference,1,{'expt,{'sin,cadr cadr u},2}}}
else union(solvenonlnrtansolve1 car u,solvenonlnrtansolve1 cdr u);
%----------------------------------------------------------------
% section for single hyperbolic polynomials
%----------------------------------------------------------------
symbolic procedure solvenonlnrtanhsub(p,x);
% Perform hyperbolic tangent substitution.
if not smemq('sinh,p) and not smemq('cosh,p) then
if smemq(x,p) then nil else nil.p
else if car p='cosh then
if smemq(x,cdr p) then (cdr p).
'(quotient (plus 1(expt tgh!- 2)) (difference 1(expt tgh!- 2)))
else nil.p
else if car p='sinh then
if smemq(x,cdr p) then (cdr p).
'(quotient (times 2 tgh!-) (difference 1(expt tgh!- 2)))
else nil.p
else
(if ca and cd and
(car ca = car cd or null car ca or null car cd)
then (car ca or car cd).(cdr ca.cdr cd))
where ca=solvenonlnrtanhsub(car p,x),
cd=solvenonlnrtanhsub(cdr p,x);
symbolic procedure solvenonlnrtanhsolve(u,x);
begin scalar p,v,s,z,r,si,y;
v:=caar u; u:= prepf numr simp cdr u;
s:=solveeval {u,'tgh!-};
si:=solveeval {{'equal,v,'!&!&},x};
for each q in cdr s do
<<z:=reval caddr q;
z:=reval sublis(solvenonlnrtanhsolve1 z,z);
for each sii in cdr si do
<<y:=simp subeval1({'!&!& . {'times,2,{'atanh,z}}},caddr sii);
r:=union({{{y},{x},1}},r);
>>;
>>;
return t.r;
end;
symbolic procedure solvenonlnrtanhsolve1 u;
% Find all cosh**2.
if atom u then nil else
if car u='expt and eqcar(cadr u,'cosh) and caddr u=2 then
{u . {'plus,1,{'expt,{'sinh,cadr cadr u},2}}}
else union(solvenonlnrtanhsolve1 car u,solvenonlnrtanhsolve1 cdr u);
endmodule;
module solvetab; % Simplification rules for SOLVE.
% Author: David R. Stoutemyer.
% Modifications by: Anthony C. Hearn, Donald R. Morrison and Rainer
% Schoepf.
put('asin, 'inverse, 'sin);
put('acos, 'inverse, 'cos);
put('atan,'inverse,'tan);
put('acot,'inverse,'cot);
put('asec,'inverse,'sec);
put('acsc,'inverse,'csc);
algebraic;
Comment Rules for reducing the number of distinct kernels in an
equation;
operator sol;
% for all a,b,c,d,x such that ratnump c and ratnump d let
% sol(a**c-b**d, x) = a**(c*lcm(c,d)) - b**(d*lcm(c,d));
for all a,b,c,d,x such that not fixp c and ratnump c and
not fixp d and ratnump d let
sol(a**c-b**d, x) = a**(c*lcm(den c,den d))
- b**(d*lcm(den c,den d));
for all a,b,c,d,x such that a freeof x and c freeof x let
sol(a**b-c**d, x) = e**(b*log a - d*log c);
for all a,b,c,d,x such that a freeof x and c freeof x let
sol(a*log b + c*log d, x) = b**a*d**c - 1,
sol(a*log b - c*log d, x) = b**a - d**c;
for all a,b,c,d,f,x such that a freeof x and c freeof x let
sol(a*log b + c*log d + f, x) = sol(log(b**a*d**c) + f, x),
sol(a*log b + c*log d - f, x) = sol(log(b**a*d**c) - f, x),
sol(a*log b - c*log d + f, x) = sol(log(b**a/d**c) + f, x),
sol(a*log b - c*log d - f, x) = sol(log(b**a/d**c) - f, x);
for all a,b,d,f,x such that a freeof x let
sol(a*log b + log d + f, x) = sol(log(b**a*d) + f, x),
sol(a*log b + log d - f, x) = sol(log(b**a*d) - f, x),
sol(a*log b - log d + f, x) = sol(log(b**a/d) + f, x),
sol(a*log b - log d - f, x) = sol(log(b**a/d) - f, x),
sol(log d - a*log b + f, x) = sol(log(d/b**a) + f, x),
sol(log d - a*log b - f, x) = sol(log(d/b**a) - f, x);
for all a,b,c,d,x such that a freeof x and c freeof x let
sol(a*log b + c*log d, x) = b**a*d**c - 1,
sol(a*log b - c*log d, x) = b**a - d**c;
for all a,b,d,x such that a freeof x let
sol(a*log b + log d, x) = b**a*d - 1,
sol(a*log b - log d, x) = b**a - d,
sol(log d - a*log b, x) = d - b**a;
for all a,b,c,x let
sol(log a + log b + c, x) = sol(log(a*b) + c, x),
sol(log a - log b + c, x) = sol(log(a/b) + c, x),
sol(log a + log b - c, x) = sol(log(a*b) - c, x),
sol(log a - log b - c, x) = sol(log(a/b) - c, x);
for all a,c,x such that c freeof x let
sol(log a + c, x) = a - e**(-c),
sol(log a - c, x) = a - e**c;
for all a,b,x let
sol(log a + log b, x) = a*b - 1,
sol(log a - log b, x) = a - b,
sol(cos a - sin b, x) = sol(cos a - cos(pi/2-b), x),
sol(sin a + cos b, x) = sol(sin a - sin(b-pi/2), x),
sol(sin a - cos b, x) = sol(sin a - sin(pi/2-b), x),
sol(sin a + sin b, x) = if !*allbranch then sin((a+b)/2)*
cos((a-b)/2) else a+b,
sol(sin a - sin b, x) = if !*allbranch then sin((a-b)/2)*
cos((a+b)/2) else a-b,
sol(cos a + cos b, x) = cos((a+b)/2)*cos((a-b)/2),
sol(cos a - cos b, x) = if !*allbranch then sin((a+b)/2)*
sin((a-b)/2) else a-b,
sol(asin a - asin b, x) = a-b,
sol(asin a + asin b, x) = a+b,
sol(acos a - acos b, x) = a-b,
sol(acos a + acos b, x) = a-b;
solve_trig_rules := {sin(~x + ~y) => sin x * cos y + cos x * sin y,
sin(~x - ~y) => sin x * cos y - cos x * sin y,
cos(~x + ~y) => cos x * cos y - sin x * sin y,
cos(~x - ~y) => cos x * cos y + sin x * sin y};
fluid '(solve_invtrig_soln!*);
share solve_invtrig_soln!*;
clear solve_invtrig_soln!*;
invtrig_solve_rules := {
sol(asin(~x) + ~y,~z) => solve_invtrig_soln!*
when check_solve_inv_trig('sin,asin(x) + y,z),
sol(acos(~x) + ~y,~z) => solve_invtrig_soln!*
when check_solve_inv_trig('cos,acos(x) + y,z),
sol(atan(~x) + ~y,~z) => solve_invtrig_soln!*
when check_solve_inv_trig('tan,atan(x) + y,z),
sol(acos(~x) + ~y,~z) => solve_invtrig_soln!*
when check_solve_inv_trig('sin,acos(x) + y,z),
sol(atan(~x) + ~y,~z) => solve_invtrig_soln!*
when check_solve_inv_trig('sin,atan(x) + y,z),
sol(asin(~x) + ~y,~z) => solve_invtrig_soln!*
when check_solve_inv_trig('cos,asin(x) + y,z),
sol(atan(~x) + ~y,~z) => solve_invtrig_soln!*
when check_solve_inv_trig('cos,atan(x) + y,z),
sol(~n*asin(~x) + ~y,~z) => solve_invtrig_soln!*
when check_solve_inv_trig('sin,n*asin(x) + y,z),
sol(~n*acos(~x) + ~y,~z) => solve_invtrig_soln!*
when check_solve_inv_trig('cos,n*acos(x) + y,z),
sol(~n*acos(~x) + ~y,~z) => solve_invtrig_soln!*
when check_solve_inv_trig('sin,n*acos(x) + y,z),
sol(~n*atan(~x) + ~y,~z) => solve_invtrig_soln!*
when check_solve_inv_trig('sin,n*atan(x) + y,z),
sol(~n*asin(~x) + ~y,~z) => solve_invtrig_soln!*
when check_solve_inv_trig('cos,n*asin(x) + y,z),
sol(~n*atan(~x) + ~y,~z) => solve_invtrig_soln!*
when check_solve_inv_trig('cos,n*atan(x) + y,z)
};
let invtrig_solve_rules;
endmodule;
module quartic; % Procedures for solving cubic, quadratic and quartic
% eqns.
% Author: Anthony C. Hearn.
% Modifications by: Stanley L. Kameny.
fluid '(!*sub2 !*rounded !*trigform dmode!*);
!*trigform := t; % Default value.
switch trigform;
symbolic procedure multfq(u,v);
% Multiplies standard form U by standard quotient V.
begin scalar x;
x := gcdf(u,denr v);
return multf(quotf(u,x),numr v) ./ quotf(denr v,x)
end;
symbolic procedure quotsqf(u,v);
% Forms quotient of standard quotient U and standard form V.
begin scalar x;
x := gcdf(numr u,v);
return quotf(numr u,x) ./ multf(quotf(v,x),denr u)
end;
symbolic procedure cubertq u;
% Rationalizing the value in this and the following function leads
% usually to neater results.
% rationalizesq
simpexpt list(mk!*sq subs2!* u,'(quotient 1 3));
% simprad(u,3);
symbolic procedure sqrtq u;
% rationalizesq
simpexpt list(mk!*sq subs2!* u,'(quotient 1 2));
% simprad(u,2);
% symbolic procedure subs2!* u; <<!*sub2 := t; subs2 u>>;
symbolic procedure solvequadratic(a2,a1,a0);
% A2, a1 and a0 are standard quotients.
% Solves a2*x**2+a1*x+a0=0 for x.
% Returns a list of standard quotient solutions.
% Modified to use root_val to compute numeric roots. SLK.
if !*rounded and numcoef a0 and numcoef a1 and numcoef a2
then for each z in cdr root_val mkpolyexp2(a2,a1,a0)
collect simp!* z else
begin scalar d;
d := sqrtq subtrsq(quotsqf(exptsq(a1,2),4),multsq(a2,a0));
a1 := quotsqf(negsq a1,2);
return list(subs2!* quotsq(addsq(a1,d),a2),
subs2!* quotsq(subtrsq(a1,d),a2))
end;
symbolic procedure numcoef a; denr a = 1 and domainp numr a;
symbolic procedure mkpolyexp2(a2,a1,a0);
% The use of 'x is arbitrary here, since it is not used by root_val.
<<a0 := numr a0;
if numr a1 then a0 := (('x . 1) . numr a1) . a0;
mk!*sq(((('x . 2) . numr a2) . a0) . 1)>>;
symbolic procedure solvecubic(a3,a2,a1,a0);
% A3, a2, a1 and a0 are standard quotients.
% Solves a3*x**3+a2*x**2+a1*x+a0=0 for x.
% Returns a list of standard quotient solutions.
% See Abramowitz and Stegun, Sect. 3.8.2, for details.
begin scalar q,r,sm,sp,s1,s2,x;
a2 := quotsq(a2,a3);
a1 := quotsq(a1,a3);
a0 := quotsq(a0,a3);
q := subtrsq(quotsqf(a1,3),quotsqf(exptsq(a2,2),9));
r := subtrsq(quotsqf(subtrsq(multsq(a1,a2),multfq(3,a0)),6),
quotsqf(exptsq(a2,3),27));
if null numr q or not !*trigform or not all_real(a0,a1,a2)
then go to cbr;
% this section uses trig functions, but only when a0,a1,a2 are real.
x := sqrtq negsq addsq(exptsq(q,3),exptsq(r,2));
if one_real simp list('times,'i,mk!*sq x) and not pos_num q
then x := negsq x;
s1 := quotsqf(atan2q(x,r),3);
s2 := negsq sqrtq negsq q;
sp := negsq multfq(2,multsq(s2,cossq s1));
sm := multsq(simp '(sqrt 3),multsq(s2,sinsq s1));
% sp := -2*sqrt(-q)*cos(atan2(sqrt( - q**3 - r**2),r)/3)$
% sm := - sqrt(-q)*sqrt(3)*sin(atan2(sqrt( - q**3 - r**2),r)/3)$
go to com;
cbr: x := sqrtq addsq(exptsq(q,3),exptsq(r,2));
s1 := cubertq addsq(r,x);
s2 := if numr s1 then negsq quotsq(q,s1)
else cubertq subtrsq(r,x);
% This optimization only works if s1 is non zero.
sp := addsq(s1,s2);
sm := quotsqf(multsq(simp '(times i (sqrt 3)),subtrsq(s1,s2)),2);
com: x := subtrsq(sp,quotsqf(a2,3));
sp := negsq addsq(quotsqf(sp,2),quotsqf(a2,3));
return list(subs2!* x,subs2!* addsq(sp,sm),
subs2!* subtrsq(sp,sm))
end;
symbolic procedure pos_num a;
begin scalar r,dmode,!*msg,!*numval;
dmode := dmode!*;
!*numval := t;
on rounded,complex;
a := resimp a;
a := real_1 a and (numr simp list('sign,mk!*sq a)=1);
off rounded,complex;
if dmode then onoff(get(dmode,'dname),t);
return a end;
symbolic procedure sinsq a;
simpiden list('sin,mk!*sq subs2!* a);
symbolic procedure cossq a;
simpiden list('cos,mk!*sq subs2!* a);
symbolic procedure all_real(a,b,c);
begin scalar r,dmode,!*msg,!*numval;
dmode := dmode!*;
!*numval := t;
on complex,rounded;
a := resimp a; b := resimp b; c := resimp c;
a := real_1 a and real_1 b and real_1 c;
off rounded,complex;
if dmode then onoff(get(dmode,'dname),t);
return a end;
symbolic procedure real_1 x;
numberp denr x and domainp numr x and null numr impartsq x;
symbolic procedure one_real a;
begin scalar r,dmode,!*msg,!*numval;
dmode := dmode!*;
!*numval := t;
on complex,rounded;
a := real_1 resimp a;
off rounded,complex;
if dmode then onoff(get(dmode,'dname),t);
return a end;
symbolic procedure atan2q(b,a);
% Used by solvecubic to set up trig form expressions for atan2 in
% terms of atan and, where necessary, a bias of +/- pi; or to call
% atan2 directly if numerical solution is called for.
((begin scalar !*msg,x,y,r,dmode,q,fg,s1,s2,s3,s4,s5;
y := b := simp!*(b := mk!*sq subs2!* b);
x := a := simp!*(a := mk!*sq subs2!* a);
if domainp numr y and domainp numr x
and numberp denr y and numberp denr x then go to aret;
dmode := dmode!*;
on complex,rounded;
y := resimp b; x := resimp a;
if not(domainp numr y and domainp numr x
and numberp denr y and numberp denr x) then go to ret;
q := sqrtq addsq(exptsq(x,2),exptsq(y,2));
x := quotsq(x,q); y := quotsq(y,q);
if null numr x then
<<s1 := t;
if numr simp list('sqn,list('repart,mk!*sq y))=-1
then s2 := t;
go to ret>>;
s3 := t;
x := numr simp list('sign,list('repart,mk!*sq x));
if x=-1 then
<<y := numr simp list('sign,list('repart,mk!*sq y));
if y=-1 then s4 := t else s5 := t>>;
ret: off rounded,complex;
if dmode then onoff(get(dmode,'dname),t);
if s1 then
fg := quotsqf(simp 'pi,2);
if s2 then fg := negsq fg;
if s3 then fg := simpiden list('atan,mk!*sq quotsq(b,a));
if s4 then fg := subtrsq(fg,simp 'pi);
if s5 then fg := addsq(fg,simp 'pi);
aret: return if fg then fg else
simpiden list('atan2,mk!*sq b,mk!*sq a) end)
where !*numval=t);
symbolic procedure solvequartic(a4,a3,a2,a1,a0);
% Solve the quartic equation a4*x**4+a3*x**3+a2*x**2+a1*x+a0 = 0,
% where the ai are standard quotients, using technique described in
% Section 3.8.3 of Abramowitz and Stegun;
begin scalar x,y,yy,cx,z,s,l,zz1,zz2,r,dmode,neg,!*msg,!*numval;
% Convert equation to monomial form.
dmode := dmode!*;
a3 := quotsq(a3,a4);
a2 := quotsq(a2,a4);
a1 := quotsq(a1,a4);
a0 := quotsq(a0,a4);
% Build and solve the resultant cubic equation. We select the
% real root if there is only one; or if there are three, we choose
% one that yields real coefficients for the quadratics. If no
% roots are known to be real, we use an arbitrary one.
yy := subtrsq(exptsq(a3,2),multfq(4,a2));
x := solvecubic(!*f2q 1,
negsq a2,
subs2!* subtrsq(multsq(a1,a3),multfq(4,a0)),
subs2!* negsq addsq(exptsq(a1,2),
multsq(a0,yy)));
cx := car x;
% Now check for real roots of the cubic.
for each rr in x do if one_real rr then s := append(s,list rr);
x := if (l := length s)=1 then car s else cx;
% Now solve the two equivalent quadratic equations.
a3 := quotsqf(a3,2); yy := quotsqf(yy,4);
% select real coefficient for quadratic if possible.
y := addsq(yy,x);
if l<2 then go to zz;
loop: if not pos_num negsq y then go to zz else if l=1 then
<<x := cx; y := addsq(yy,x); go to zz>>;
l := l-1; s := cdr s; x := car s;
y := addsq(yy,x); go to loop;
zz: y := sqrtq y;
x := quotsqf(x,2);
z := sqrtq subtrsq(exptsq(x,2),a0);
% the following test is needed, according to some editions of
% Abramowitz and Stegun, to select the correct signs
% (for the terms z) in the quadratics to produce correct roots.
% Unfortunately, this test may fail for coefficients which are not
% numeric because of the inability to recognize zero.
!*numval := t;
on rounded,complex;
if null numr
(zz1 :=
resimp subtrsq(a1,addsq(multsq(subtrsq(a3,y),addsq(x,z)),
multsq(addsq(a3,y),subtrsq(x,z))))) then go to rst;
if null numr
(zz2 :=
resimp subtrsq(a1,addsq(multsq(subtrsq(a3,y),subtrsq(x,z)),
multsq(addsq(a3,y),addsq(x,z)))))
then <<neg := t; go to rst>>;
if domainp numr zz1 and domainp numr zz2
and numberp denr zz1 and numberp denr zz2 and
numr simp list('sign,list('difference,list('norm,mk!*sq zz1),
list('norm,mk!*sq zz2)))=1 then neg := t;
rst: off rounded,complex;
if dmode then onoff(get(dmode,'dname),t);
if neg then z := negsq z;
return append(solvequadratic(!*f2q 1,subtrsq(a3,y),subtrsq(x,z)),
solvequadratic(!*f2q 1,addsq(a3,y),addsq(x,z)))
end;
endmodule;
end;