File r34.1/lib/fide.log artifact dc0eccd6ee part of check-in d58ccc1261


REDUCE 3.4.1, 15-Jul-92 ...

1: 
SF(1) := 1

SF(2) := 1

SF(3) := 1

(FIDE)


%***********************************************************************
%*****                                                             *****
%*****  Package  F I D E  --- T e s t Examples  Ver. 1.1  05/1991  *****
%*****                                                             *****
%***********************************************************************
%***********************************************************************
%*****                                                             *****
%*****    T e s t     Examples   ---   Module    E X P R E S       *****
%*****                                                             *****
%***********************************************************************

let cos th**2=1 - sin th**2,
    cos fi**2=1 - sin fi**2;


factor df;


on rat;


for all x,y let diff(x,y)=df(x,y);


depend u,r,th,fi;


depend v,r,th,fi;


depend f,r,th,fi;


depend w,r,th,fi;


% Spherical coordinate system
scalefactors 3,r*sin th*cos fi,r*sin th*sin fi,r*cos th,r,th,fi;


SF(1) := 1

SF(2) := R

SF(3) := SIN(TH)*R

tensor a1,a2,a3,a4,a5;


vectors u,v;


dyads w;


a1:=grad f;

A1:= ( DF(F,R) , 

        DF(F,TH)
       ---------- , 
           R

        DF(F,FI)
       ----------- ) 
        SIN(TH)*R


a2:=div u;

     DF(U(3),FI)     DF(U(2),TH)
A2:=------------- + ------------- + DF(U(1),R)
      SIN(TH)*R           R

    U(2)*COS(TH) + 2*U(1)*SIN(TH)
 + -------------------------------
              SIN(TH)*R


a3:=curl v;

        DF(V(3),TH)      - DF(V(2),FI)     V(3)*COS(TH)
A3:= ( ------------- + ---------------- + -------------- , 
             R            SIN(TH)*R         SIN(TH)*R

                        DF(V(1),FI)      - V(3)
        - DF(V(3),R) + ------------- + --------- , 
                         SIN(TH)*R         R

                      - DF(V(1),TH)     V(2)
       DF(V(2),R) + ---------------- + ------ ) 
                           R             R


a4:=lapl v;

         - 2*DF(V(3),FI)      - 2*DF(V(2),TH)
A4:= ( ------------------ + ------------------ + DF(V(1),R,2)
                    2                2
           SIN(TH)*R                R

           2*DF(V(1),R)     DF(V(1),TH,2)     DF(V(1),TH)*COS(TH)
        + -------------- + --------------- + ---------------------
                R                 2                        2
                                 R                SIN(TH)*R

           DF(V(1),FI,2)     2*(V(2)*COS(TH) + V(1)*SIN(TH))
        + --------------- - --------------------------------- , 
                   2  2                         2
            SIN(TH) *R                 SIN(TH)*R

         - 2*DF(V(3),FI)*COS(TH)                    2*DF(V(2),R)
       -------------------------- + DF(V(2),R,2) + --------------
                     2  2                                R
              SIN(TH) *R

           DF(V(2),TH,2)     DF(V(2),TH)*COS(TH)     DF(V(2),FI,2)
        + --------------- + --------------------- + ---------------
                 2                        2                  2  2
                R                SIN(TH)*R            SIN(TH) *R

           2*DF(V(1),TH)        - V(2)
        + --------------- + ------------- , 
                 2                  2  2
                R            SIN(TH) *R

                       2*DF(V(3),R)     DF(V(3),TH,2)
       DF(V(3),R,2) + -------------- + ---------------
                            R                 2
                                             R

           DF(V(3),TH)*COS(TH)     DF(V(3),FI,2)
        + --------------------- + ---------------
                        2                  2  2
               SIN(TH)*R            SIN(TH) *R

           2*DF(V(2),FI)*COS(TH)     2*DF(V(1),FI)        - V(3)
        + ----------------------- + --------------- + -------------
                       2  2                    2              2  2
                SIN(TH) *R            SIN(TH)*R        SIN(TH) *R

     ) 


a3:=2*a3+a4;

        2*DF(V(3),TH)      - 2*DF(V(3),FI)      - 2*DF(V(2),TH)
A3:= ( --------------- + ------------------ + ------------------
              R                       2                2
                             SIN(TH)*R                R

            - 2*DF(V(2),FI)                    2*DF(V(1),R)
        + ------------------ + DF(V(1),R,2) + --------------
              SIN(TH)*R                             R

           DF(V(1),TH,2)     DF(V(1),TH)*COS(TH)     DF(V(1),FI,2)
        + --------------- + --------------------- + ---------------
                 2                        2                  2  2
                R                SIN(TH)*R            SIN(TH) *R

           2*(V(3)*COS(TH)*R - V(2)*COS(TH) - V(1)*SIN(TH))
        + -------------------------------------------------- , 
                                       2
                              SIN(TH)*R

                           - 2*DF(V(3),FI)*COS(TH)
        - 2*DF(V(3),R) + -------------------------- + DF(V(2),R,2)
                                       2  2
                                SIN(TH) *R

           2*DF(V(2),R)     DF(V(2),TH,2)     DF(V(2),TH)*COS(TH)
        + -------------- + --------------- + ---------------------
                R                 2                        2
                                 R                SIN(TH)*R

           DF(V(2),FI,2)     2*DF(V(1),TH)     2*DF(V(1),FI)
        + --------------- + --------------- + ---------------
                   2  2            2             SIN(TH)*R
            SIN(TH) *R            R

                            2
            - 2*V(3)*SIN(TH) *R - V(2)
        + ----------------------------- , 
                          2  2
                   SIN(TH) *R

                       2*DF(V(3),R)     DF(V(3),TH,2)
       DF(V(3),R,2) + -------------- + ---------------
                            R                 2
                                             R

           DF(V(3),TH)*COS(TH)     DF(V(3),FI,2)
        + --------------------- + --------------- + 2*DF(V(2),R)
                        2                  2  2
               SIN(TH)*R            SIN(TH) *R

           2*DF(V(2),FI)*COS(TH)      - 2*DF(V(1),TH)
        + ----------------------- + ------------------
                       2  2                 R
                SIN(TH) *R

                                                     2
           2*DF(V(1),FI)      - V(3) + 2*V(2)*SIN(TH) *R
        + --------------- + ----------------------------- ) 
                     2                      2  2
            SIN(TH)*R                SIN(TH) *R


a5:=lapl f;

                 2*DF(F,R)     DF(F,TH,2)     DF(F,TH)*COS(TH)
A5:=DF(F,R,2) + ----------- + ------------ + ------------------
                     R              2                     2
                                   R             SIN(TH)*R

    DF(F,FI,2)
 + -------------
           2  2
    SIN(TH) *R


a1:=a1+div w;

        DF(W(3,1),FI)     DF(W(2,1),TH)
A1:= ( --------------- + --------------- + DF(W(1,1),R) + DF(F,R) + (
          SIN(TH)*R             R

           - W(3,3)*SIN(TH) - W(2,2)*SIN(TH) + W(2,1)*COS(TH)

           + 2*W(1,1)*SIN(TH))/(SIN(TH)*R) , 

        DF(W(3,2),FI)     DF(W(2,2),TH)                    DF(F,TH)
       --------------- + --------------- + DF(W(1,2),R) + ---------- 
          SIN(TH)*R             R                             R

       + ( - W(3,3)*COS(TH) + W(2,2)*COS(TH) + W(2,1)*SIN(TH)

           + 2*W(1,2)*SIN(TH))/(SIN(TH)*R) , 

        DF(W(3,3),FI)     DF(W(2,3),TH)                    DF(F,FI)
       --------------- + --------------- + DF(W(1,3),R) + -----------
          SIN(TH)*R             R                          SIN(TH)*R

        + (W(3,2)*COS(TH) + W(3,1)*SIN(TH) + W(2,3)*COS(TH)

            + 2*W(1,3)*SIN(TH))/(SIN(TH)*R) ) 


a1:=u.dyad((a,0,1),(1,b,3),(0,c,d));

A1:= ( U(2) + U(1)*A , 

       U(3)*C + U(2)*B , 

       U(3)*D + 3*U(2) + U(1) ) 


a2:=vect(a,b,c);

A2:= ( A , 

       B , 

       C ) 


a1.a2;

                                     2                    2
U(3)*B*C + U(3)*C*D + U(2)*A + U(2)*B  + 3*U(2)*C + U(1)*A  + U(1)*C


%  Scalar product
u.v;

U(3)*V(3) + U(2)*V(2) + U(1)*V(1)


%  Vector product
u?v;

 (  - U(3)*V(2) + U(2)*V(3) , 

   U(3)*V(1) - U(1)*V(3) , 

    - U(2)*V(1) + U(1)*V(2) ) 


%  Dyadic
u&v;

 (  ( U(1)*V(1) , 

      U(1)*V(2) , 

      U(1)*V(3) )  , 

    ( U(2)*V(1) , 

      U(2)*V(2) , 

      U(2)*V(3) )  , 

    ( U(3)*V(1) , 

      U(3)*V(2) , 

      U(3)*V(3) )  ) 


%  Directional derivative
dirdf(u,v);

                      DF(V(1),TH)*U(2)     DF(V(1),FI)*U(3)
 ( DF(V(1),R)*U(1) + ------------------ + ------------------
                             R                SIN(TH)*R

       U(3)*V(3) + U(2)*V(2)
    - ----------------------- , 
                 R

                      DF(V(2),TH)*U(2)     DF(V(2),FI)*U(3)
   DF(V(2),R)*U(1) + ------------------ + ------------------
                             R                SIN(TH)*R

        - U(3)*V(3)*COS(TH) + U(2)*V(1)*SIN(TH)
    + ------------------------------------------ , 
                      SIN(TH)*R

                      DF(V(3),TH)*U(2)     DF(V(3),FI)*U(3)
   DF(V(3),R)*U(1) + ------------------ + ------------------
                             R                SIN(TH)*R

       U(3)*(V(2)*COS(TH) + V(1)*SIN(TH))
    + ------------------------------------ ) 
                   SIN(TH)*R


clear a1,a2,a3,a4,a5,u,v,w;


for all x,y clear diff(x,y);


clear cos th**2,
      cos fi**2;


remfac df;


off rat;


scalefactors 3,x,y,z,x,y,z;


SF(1) := 1

SF(2) := 1

SF(3) := 1


%***********************************************************************
%*****                                                             *****
%*****      T e s t     Examples   ---   Module    I I M E T       *****
%*****                                                             *****
%***********************************************************************

% Example I.1 - 1-D Lagrangian Hydrodynamics

off exp;


factor diff;


on rat,eqfu;



% Declare which indexes will be given to coordinates
coordinates x,t into j,m;



% Declares uniform grid in x coordinate
grid uniform,x;



% Declares dependencies of functions on coordinates
dependence eta(t,x),v(t,x),eps(t,x),p(t,x);



% Declares p as known function
given p;



same eta,v,p;



iim a, eta,diff(eta,t)-eta*diff(v,x)=0,
    v,diff(v,t)+eta/ro*diff(p,x)=0,
    eps,diff(eps,t)+eta*p/ro*diff(v,x)=0;


*****************************
*****      Program      *****          IIMET Ver 1.1  17/05/91
*****************************

      Partial Differential Equations
      ==============================

 - DIFF(V,X)*ETA + DIFF(ETA,T)    =    0

 DIFF(P,X)*ETA
--------------- + DIFF(V,T)    =    0
      RO

 DIFF(V,X)*P*ETA
----------------- + DIFF(EPS,T)    =    0
       RO


 Backtracking needed in grid optimalization
0 interpolations are needed in X coordinate
  Equation for ETA variable is integrated in HALF grid point
  Equation for V variable is integrated in HALF grid point
  Equation for EPS variable is integrated in HALF grid point
0 interpolations are needed in T coordinate
  Equation for ETA variable is integrated in HALF grid point
  Equation for V variable is integrated in HALF grid point
  Equation for EPS variable is integrated in HALF grid point

         Equations after Discretization Using IIM :
         ==========================================

( - ((V(J + 1,M + 1) - V(J,M + 1))*(ETA(J + 1,M + 1) + ETA(J,M + 1))

      + (V(J + 1,M) - V(J,M))*(ETA(J + 1,M) + ETA(J,M)))

 *(HT(M + 1) + HT(M))

  + 4*(ETA(J + 1,M + 1) - ETA(J + 1,M) + ETA(J,M + 1) - ETA(J,M))*HX)

/(4*(HT(M + 1) + HT(M))*HX)   =   0


(((P(J + 1,M + 1) - P(J,M + 1))*(ETA(J + 1,M + 1) + ETA(J,M + 1))

   + (P(J + 1,M) - P(J,M))*(ETA(J + 1,M) + ETA(J,M)))

 *(HT(M + 1) + HT(M))

  + 4*(V(J + 1,M + 1) - V(J + 1,M) + V(J,M + 1) - V(J,M))*RO*HX)/(4

   *(HT(M + 1) + HT(M))*RO*HX)   =   0


(((P(J + 1,M + 1)*ETA(J + 1,M + 1) + P(J,M + 1)*ETA(J,M + 1))

  *(V(J + 1,M + 1) - V(J,M + 1)) + 

  (P(J + 1,M)*ETA(J + 1,M) + P(J,M)*ETA(J,M))*(V(J + 1,M) - V(J,M)))

 *(HT(M + 1) + HT(M)) + 4

 *(EPS(J + 1,M + 1) - EPS(J + 1,M) + EPS(J,M + 1) - EPS(J,M))*RO*HX)/

(4*(HT(M + 1) + HT(M))*RO*HX)   =   0




clear a;


clearsame;


cleargiven;



%***********************************************************************

% Example  I.2 - How other functions (here sin, cos) can be used in
%                discretized terms

diffunc sin,cos;


difmatch all,diff(u*sin x,x),u=one,2,(u(i+1)*sin x(i+1)-u(i-1)
                   *sin x(i-1))/(dim1+dip1),
                 u=half,0,(u(i+1/2)*sin x(i+1/2)-u(i-1/2)*sin x(i-1/2))
                   /di;


difmatch all,cos x*diff(u,x,2),u=one,0,cos x i*(u(i+1)-2*u(i)+u(i-1))
                   /di^2,
                 u=half,3,(u(i+3/2)-u(i+1/2))/dip2/2 -
                          (u(i-1/2)-u(i-3/2))/dim2/2;


off exp;


coordinates x,t into j,m;


grid uniform,x,t;


dependence u(x,t),v(x,t);


iim a,u,diff(u,t)+diff(u,x)+cos x*diff(v,x,2)=0,
      v,diff(v,t)+diff(sin x*u,x)=0;


*****************************
*****      Program      *****          IIMET Ver 1.1  17/05/91
*****************************

      Partial Differential Equations
      ==============================

DIFF(U,T) + DIFF(U,X) + DIFF(V,X,2)*COS(X)    =    0

DIFF(SIN(X)*U,X) + DIFF(V,T)    =    0


0 interpolations are needed in X coordinate
  Equation for U variable is integrated in HALF grid point
  Equation for V variable is integrated in HALF grid point
0 interpolations are needed in T coordinate
  Equation for U variable is integrated in HALF grid point
  Equation for V variable is integrated in HALF grid point

         Equations after Discretization Using IIM :
         ==========================================

(((U(J + 1,M + 1) + U(J + 1,M))*HT

   + (U(J + 1,M + 1) - U(J + 1,M) + U(J,M + 1) - U(J,M))*HX

                                        2*J - 1
   - (U(J,M + 1) + U(J,M))*HT)*HX + (V(---------,M + 1)
                                           2

          2*J - 1          2*J + 3              2*J + 3
     + V(---------,M) + V(---------,M + 1) + V(---------,M)
             2                2                    2

            2*J + 1                2*J + 1             2*J + 1
     - 2*V(---------,M + 1) - 2*V(---------,M))*COS(X(---------))*HT)
               2                      2                   2

      2
/(2*HX *HT)   =   0


(((U(J + 1,M + 1) + U(J + 1,M))*SIN(X(J + 1))

   - (U(J,M + 1) + U(J,M))*SIN(X(J)))*HT

          2*J + 1              2*J + 1
  + 2*(V(---------,M + 1) - V(---------,M))*HX)/(2*HX*HT)   =   0
             2                    2



clear a;



%***********************************************************************

% Example I.3 - Schrodinger equation

factor diff;


coordinates t,x into m,j;


grid uniform,x,t;


dependence ur(x,t),ui(x,t);


same ui,ur;


iim a,ur,-diff(ui,t)+1/2*diff(ur,x,2)+(ur**2+ui**2)*ur=0,
       ui,diff(ur,t)+1/2*diff(ui,x,2)+(ur**2+ui**2)*ui=0;


*****************************
*****      Program      *****          IIMET Ver 1.1  17/05/91
*****************************

      Partial Differential Equations
      ==============================

 DIFF(UR,X,2)                                2     2
-------------- - DIFF(UI,T)    =     - UR*(UR  + UI )
      2

              DIFF(UI,X,2)                   2     2
DIFF(UR,T) + --------------    =     - UI*(UR  + UI )
                   2


0 interpolations are needed in T coordinate
  Equation for UR variable is integrated in HALF grid point
  Equation for UI variable is integrated in HALF grid point
0 interpolations are needed in X coordinate
  Equation for UR variable is integrated in ONE grid point
  Equation for UI variable is integrated in ONE grid point

         Equations after Discretization Using IIM :
         ==========================================

((UR(M + 1,J - 1) + UR(M + 1,J + 1) - 2*UR(M + 1,J) + UR(M,J - 1)

                                                   2               2
   + UR(M,J + 1) - 2*UR(M,J))*HT - 4*UI(M + 1,J)*HX  + 4*UI(M,J)*HX )

      2                          3                          2
/(4*HX *HT)   =    - (UR(M + 1,J)  + UR(M + 1,J)*UI(M + 1,J)

             3                  2
    + UR(M,J)  + UR(M,J)*UI(M,J) )/2


((UI(M + 1,J - 1) + UI(M + 1,J + 1) - 2*UI(M + 1,J) + UI(M,J - 1)

                                                   2               2
   + UI(M,J + 1) - 2*UI(M,J))*HT + 4*UR(M + 1,J)*HX  - 4*UR(M,J)*HX )

      2                          2                      2
/(4*HX *HT)   =    - (UR(M + 1,J) *UI(M + 1,J) + UR(M,J) *UI(M,J)

                 3          3
    + UI(M + 1,J)  + UI(M,J) )/2



clear a;


clearsame;



%***********************************************************************

% Example I.4 - Vector calculus in p.d.e. input
%               cooperation with expres module
%               2-D hydrodynamics

scalefactors 2,x,y,x,y;


SF(1) := 1

SF(2) := 1

vectors u;


off exp,twogrid;


on eqfu;


factor diff,ht,hx,hy;


coordinates x,y,t into j,i,m;


grid uniform,x,y,t;


dependence n(t,x,y),u(t,x,y),p(t,x,y);


iim a,n,diff(n,t)+u.grad n+n*div u=0,
     u,m*n*(diff(u,t)+u.grad u)+grad p=vect(0,0),
     p,3/2*(diff(p,t)+u.grad p)+5/2*p*div u=0;


*****************************
*****      Program      *****          IIMET Ver 1.1  17/05/91
*****************************

      Partial Differential Equations
      ==============================

DIFF(N,T) + DIFF(N,X)*U1 + DIFF(N,Y)*U2 + DIFF(U1,X)*N + DIFF(U2,Y)*N

    =    0

DIFF(P,X) + DIFF(U1,T)*M*N + DIFF(U1,X)*M*N*U1 + DIFF(U1,Y)*M*N*U2

    =    0

DIFF(P,Y) + DIFF(U2,T)*M*N + DIFF(U2,X)*M*N*U1 + DIFF(U2,Y)*M*N*U2

    =    0

 3*DIFF(P,T)     3*DIFF(P,X)*U1     3*DIFF(P,Y)*U2
------------- + ---------------- + ----------------
      2                2                  2

    5*DIFF(U1,X)*P     5*DIFF(U2,Y)*P
 + ---------------- + ----------------    =    0
          2                  2


0 interpolations are needed in X coordinate
  Equation for N variable is integrated in HALF grid point
  Equation for U1 variable is integrated in HALF grid point
  Equation for U2 variable is integrated in HALF grid point
  Equation for P variable is integrated in HALF grid point
0 interpolations are needed in Y coordinate
  Equation for N variable is integrated in HALF grid point
  Equation for U1 variable is integrated in HALF grid point
  Equation for U2 variable is integrated in HALF grid point
  Equation for P variable is integrated in HALF grid point
0 interpolations are needed in T coordinate
  Equation for N variable is integrated in HALF grid point
  Equation for U1 variable is integrated in HALF grid point
  Equation for U2 variable is integrated in HALF grid point
  Equation for P variable is integrated in HALF grid point

         Equations after Discretization Using IIM :
         ==========================================

   -1   -1
(HY  *HX  *((U1(J + 1,I + 1,M + 1)*HY + U2(J + 1,I + 1,M + 1)*HX)

            *N(J + 1,I + 1,M + 1) + 

            (U1(J + 1,I + 1,M)*HY + U2(J + 1,I + 1,M)*HX)

            *N(J + 1,I + 1,M) + 

            (U1(J + 1,I,M + 1)*HY - U2(J + 1,I,M + 1)*HX)

            *N(J + 1,I,M + 1)

             + (U1(J + 1,I,M)*HY - U2(J + 1,I,M)*HX)*N(J + 1,I,M) - 

            (U1(J,I + 1,M + 1)*HY - U2(J,I + 1,M + 1)*HX)

            *N(J,I + 1,M + 1)

             - (U1(J,I + 1,M)*HY - U2(J,I + 1,M)*HX)*N(J,I + 1,M)

             - (U1(J,I,M + 1)*HY + U2(J,I,M + 1)*HX)*N(J,I,M + 1)

                                                               -1
             - (U1(J,I,M)*HY + U2(J,I,M)*HX)*N(J,I,M)))/4 + (HT  *(

      N(J + 1,I + 1,M + 1) - N(J + 1,I + 1,M) + N(J + 1,I,M + 1)

       - N(J + 1,I,M) + N(J,I + 1,M + 1) - N(J,I + 1,M)

       + N(J,I,M + 1) - N(J,I,M)))/4   =   0


   -1
(HX  *((P(J + 1,I + 1,M + 1) + P(J + 1,I + 1,M) + P(J + 1,I,M + 1)

         + P(J + 1,I,M))

        - (P(J,I + 1,M + 1) + P(J,I + 1,M) + P(J,I,M + 1) + P(J,I,M))

                 -1   -1
       ))/4 + (HY  *HX  *(((

                        N(J + 1,I + 1,M + 1)*U1(J + 1,I + 1,M + 1)

                         + N(J,I + 1,M + 1)*U1(J,I + 1,M + 1))

                     *(U1(J + 1,I + 1,M + 1) - U1(J,I + 1,M + 1)) + (

                        N(J + 1,I + 1,M)*U1(J + 1,I + 1,M)

                         + N(J,I + 1,M)*U1(J,I + 1,M))

                     *(U1(J + 1,I + 1,M) - U1(J,I + 1,M)) + (

                        N(J + 1,I,M + 1)*U1(J + 1,I,M + 1)

                         + N(J,I,M + 1)*U1(J,I,M + 1))

                     *(U1(J + 1,I,M + 1) - U1(J,I,M + 1)) + (

                        N(J + 1,I,M)*U1(J + 1,I,M)

                         + N(J,I,M)*U1(J,I,M))

                     *(U1(J + 1,I,M) - U1(J,I,M)))*HY + ((

                        N(J + 1,I + 1,M + 1)*U2(J + 1,I + 1,M + 1)

                         + N(J + 1,I,M + 1)*U2(J + 1,I,M + 1))

                     *(U1(J + 1,I + 1,M + 1) - U1(J + 1,I,M + 1)) + (

                        N(J + 1,I + 1,M)*U2(J + 1,I + 1,M)

                         + N(J + 1,I,M)*U2(J + 1,I,M))

                     *(U1(J + 1,I + 1,M) - U1(J + 1,I,M)) + (

                        N(J,I + 1,M + 1)*U2(J,I + 1,M + 1)

                         + N(J,I,M + 1)*U2(J,I,M + 1))

                     *(U1(J,I + 1,M + 1) - U1(J,I,M + 1)) + (

                        N(J,I + 1,M)*U2(J,I + 1,M)

                         + N(J,I,M)*U2(J,I,M))

                                                                 -1
                     *(U1(J,I + 1,M) - U1(J,I,M)))*HX)*M)/8 + (HT  *(

      (N(J + 1,I + 1,M + 1) + N(J + 1,I + 1,M))

      *(U1(J + 1,I + 1,M + 1) - U1(J + 1,I + 1,M)) + 

      (N(J + 1,I,M + 1) + N(J + 1,I,M))

      *(U1(J + 1,I,M + 1) - U1(J + 1,I,M)) + 

      (N(J,I + 1,M + 1) + N(J,I + 1,M))

      *(U1(J,I + 1,M + 1) - U1(J,I + 1,M))

       + (N(J,I,M + 1) + N(J,I,M))*(U1(J,I,M + 1) - U1(J,I,M)))*M)/8

   =   0


   -1
(HY  *((N(J + 1,I + 1,M + 1)*U2(J + 1,I + 1,M + 1)

         + N(J + 1,I,M + 1)*U2(J + 1,I,M + 1))

       *(U2(J + 1,I + 1,M + 1) - U2(J + 1,I,M + 1)) + (

          N(J + 1,I + 1,M)*U2(J + 1,I + 1,M)

           + N(J + 1,I,M)*U2(J + 1,I,M))

       *(U2(J + 1,I + 1,M) - U2(J + 1,I,M)) + (

          N(J,I + 1,M + 1)*U2(J,I + 1,M + 1)

           + N(J,I,M + 1)*U2(J,I,M + 1))

       *(U2(J,I + 1,M + 1) - U2(J,I,M + 1)) + 

       (N(J,I + 1,M)*U2(J,I + 1,M) + N(J,I,M)*U2(J,I,M))

                                               -1
       *(U2(J,I + 1,M) - U2(J,I,M)))*M)/8 + (HX  *((

         N(J + 1,I + 1,M + 1)*U1(J + 1,I + 1,M + 1)

          + N(J,I + 1,M + 1)*U1(J,I + 1,M + 1))

      *(U2(J + 1,I + 1,M + 1) - U2(J,I + 1,M + 1)) + (

         N(J + 1,I + 1,M)*U1(J + 1,I + 1,M)

          + N(J,I + 1,M)*U1(J,I + 1,M))

      *(U2(J + 1,I + 1,M) - U2(J,I + 1,M)) + (

         N(J + 1,I,M + 1)*U1(J + 1,I,M + 1)

          + N(J,I,M + 1)*U1(J,I,M + 1))

      *(U2(J + 1,I,M + 1) - U2(J,I,M + 1)) + 

      (N(J + 1,I,M)*U1(J + 1,I,M) + N(J,I,M)*U1(J,I,M))

                                              -1   -1
      *(U2(J + 1,I,M) - U2(J,I,M)))*M)/8 + (HY  *HT  *((

         (N(J + 1,I + 1,M + 1) + N(J + 1,I + 1,M))

         *(U2(J + 1,I + 1,M + 1) - U2(J + 1,I + 1,M)) + 

         (N(J + 1,I,M + 1) + N(J + 1,I,M))

         *(U2(J + 1,I,M + 1) - U2(J + 1,I,M)) + 

         (N(J,I + 1,M + 1) + N(J,I + 1,M))

         *(U2(J,I + 1,M + 1) - U2(J,I + 1,M))

          + (N(J,I,M + 1) + N(J,I,M))*(U2(J,I,M + 1) - U2(J,I,M)))*M

      *HY + 2*(P(J + 1,I + 1,M + 1) + P(J + 1,I + 1,M))*HT

       - 2*(P(J + 1,I,M + 1) + P(J + 1,I,M))*HT

       + 2*(P(J,I + 1,M + 1) + P(J,I + 1,M))*HT

       - 2*(P(J,I,M + 1) + P(J,I,M))*HT))/8   =   0


   -1   -1
(HY  *HX  *(5*((P(J + 1,I + 1,M + 1) + P(J + 1,I,M + 1))

               *(U2(J + 1,I + 1,M + 1) - U2(J + 1,I,M + 1)) + 

               (P(J + 1,I + 1,M) + P(J + 1,I,M))

               *(U2(J + 1,I + 1,M) - U2(J + 1,I,M)) + 

               (P(J,I + 1,M + 1) + P(J,I,M + 1))

               *(U2(J,I + 1,M + 1) - U2(J,I,M + 1)) + 

               (P(J,I + 1,M) + P(J,I,M))*(U2(J,I + 1,M) - U2(J,I,M)))

            *HX + 3*((P(J + 1,I + 1,M + 1) - P(J + 1,I,M + 1))

               *(U2(J + 1,I + 1,M + 1) + U2(J + 1,I,M + 1)) + 

               (P(J + 1,I + 1,M) - P(J + 1,I,M))

               *(U2(J + 1,I + 1,M) + U2(J + 1,I,M)) + 

               (P(J,I + 1,M + 1) - P(J,I,M + 1))

               *(U2(J,I + 1,M + 1) + U2(J,I,M + 1)) + 

               (P(J,I + 1,M) - P(J,I,M))*(U2(J,I + 1,M) + U2(J,I,M)))

            *HX + 5*((P(J + 1,I + 1,M + 1) + P(J,I + 1,M + 1))

               *(U1(J + 1,I + 1,M + 1) - U1(J,I + 1,M + 1)) + 

               (P(J + 1,I + 1,M) + P(J,I + 1,M))

               *(U1(J + 1,I + 1,M) - U1(J,I + 1,M)) + 

               (P(J + 1,I,M + 1) + P(J,I,M + 1))

               *(U1(J + 1,I,M + 1) - U1(J,I,M + 1)) + 

               (P(J + 1,I,M) + P(J,I,M))*(U1(J + 1,I,M) - U1(J,I,M)))

            *HY + 3*((P(J + 1,I + 1,M + 1) - P(J,I + 1,M + 1))

               *(U1(J + 1,I + 1,M + 1) + U1(J,I + 1,M + 1)) + 

               (P(J + 1,I + 1,M) - P(J,I + 1,M))

               *(U1(J + 1,I + 1,M) + U1(J,I + 1,M)) + 

               (P(J + 1,I,M + 1) - P(J,I,M + 1))

               *(U1(J + 1,I,M + 1) + U1(J,I,M + 1)) + 

               (P(J + 1,I,M) - P(J,I,M))*(U1(J + 1,I,M) + U1(J,I,M)))

                            -1
            *HY))/16 + (3*HT  *(P(J + 1,I + 1,M + 1)

       - P(J + 1,I + 1,M) + P(J + 1,I,M + 1) - P(J + 1,I,M)

       + P(J,I + 1,M + 1) - P(J,I + 1,M) + P(J,I,M + 1) - P(J,I,M)))/

8   =   0



clear a,u;



%***********************************************************************

% Example I.5 - 1-D hydrodynamics up to 3-rd moments (heat flow)

coordinates x,t into j,m;


grid uniform,x,t;


dependence n(x,t),u(x,t),tt(x,t),p(x,t),q(x,t);


iim a, n,diff(n,t)+u*diff(n,x)+diff(u,x)=0,
    u,n*m*(diff(u,t)+u*diff(u,x))+k*diff(n*tt,x)+diff(p,x)=0,
    tt,3/2*k*n*(diff(tt,t)+u*diff(tt,x))+n*k*tt*diff(u,x)+1/2*p
       *diff(u,x)+diff(q,x)=0,
    p,diff(p,t)+u*diff(p,x)+p*diff(u,x)+n*k*tt*diff(u,x)+2/5*diff(q,x)
       =0,
    q,diff(q,t)+u*diff(q,x)+q*diff(u,x)+5/2*n*k**2*tt/m*diff(tt,x)+n*k
       *tt*diff(p,x)-p*diff(p,x)=0;


*****************************
*****      Program      *****          IIMET Ver 1.1  17/05/91
*****************************

      Partial Differential Equations
      ==============================

DIFF(N,T) + DIFF(N,X)*U + DIFF(U,X)    =    0

DIFF(N*TT,X)*K + DIFF(P,X) + DIFF(U,T)*M*N + DIFF(U,X)*M*N*U    =    

0

             DIFF(U,X)*(2*K*N*TT + P)     3*DIFF(TT,T)*K*N
DIFF(Q,X) + -------------------------- + ------------------
                        2                        2

    3*DIFF(TT,X)*K*N*U
 + --------------------    =    0
            2

                           2*DIFF(Q,X)
DIFF(P,T) + DIFF(P,X)*U + ------------- + DIFF(U,X)*(K*N*TT + P)
                                5

    =    0

DIFF(P,X)*(K*N*TT - P) + DIFF(Q,T) + DIFF(Q,X)*U + DIFF(U,X)*Q

                  2
    5*DIFF(TT,X)*K *N*TT
 + ----------------------    =    0
            2*M


0 interpolations are needed in X coordinate
  Equation for N variable is integrated in HALF grid point
  Equation for U variable is integrated in HALF grid point
  Equation for TT variable is integrated in HALF grid point
  Equation for P variable is integrated in HALF grid point
  Equation for Q variable is integrated in HALF grid point
0 interpolations are needed in T coordinate
  Equation for N variable is integrated in HALF grid point
  Equation for U variable is integrated in HALF grid point
  Equation for TT variable is integrated in HALF grid point
  Equation for P variable is integrated in HALF grid point
  Equation for Q variable is integrated in HALF grid point

         Equations after Discretization Using IIM :
         ==========================================

   -1
(HX  *(((N(J + 1,M + 1) - N(J,M + 1))*(U(J + 1,M + 1) + U(J,M + 1))

         + (N(J + 1,M) - N(J,M))*(U(J + 1,M) + U(J,M)))

        + 2*(U(J + 1,M + 1) + U(J + 1,M)) - 2*(U(J,M + 1) + U(J,M))))

        -1
      HT  *(N(J + 1,M + 1) - N(J + 1,M) + N(J,M + 1) - N(J,M))
/4 + ----------------------------------------------------------
                                 2

   =   0


   -1
(HX  *(((N(J + 1,M + 1)*U(J + 1,M + 1) + N(J,M + 1)*U(J,M + 1))

        *(U(J + 1,M + 1) - U(J,M + 1)) + 

        (N(J + 1,M)*U(J + 1,M) + N(J,M)*U(J,M))*(U(J + 1,M) - U(J,M))

        )*M + 2*(N(J + 1,M + 1)*TT(J + 1,M + 1)

                  + N(J + 1,M)*TT(J + 1,M) - N(J,M + 1)*TT(J,M + 1)

                  - N(J,M)*TT(J,M))*K

        + 2*(P(J + 1,M + 1) + P(J + 1,M)) - 2*(P(J,M + 1) + P(J,M))))

        -1
/4 + (HT  *((N(J + 1,M + 1) + N(J + 1,M))

            *(U(J + 1,M + 1) - U(J + 1,M))

             + (N(J,M + 1) + N(J,M))*(U(J,M + 1) - U(J,M)))*M)/4

   =   0


   -1
(HX  *(3*((N(J + 1,M + 1)*U(J + 1,M + 1) + N(J,M + 1)*U(J,M + 1))

          *(TT(J + 1,M + 1) - TT(J,M + 1)) + 

          (N(J + 1,M)*U(J + 1,M) + N(J,M)*U(J,M))

          *(TT(J + 1,M) - TT(J,M)))*K + 2*(

          (N(J + 1,M + 1)*TT(J + 1,M + 1) + N(J,M + 1)*TT(J,M + 1))

          *(U(J + 1,M + 1) - U(J,M + 1)) + 

          (N(J + 1,M)*TT(J + 1,M) + N(J,M)*TT(J,M))

          *(U(J + 1,M) - U(J,M)))*K + (

          (P(J + 1,M + 1) + P(J,M + 1))*(U(J + 1,M + 1) - U(J,M + 1))

           + (P(J + 1,M) + P(J,M))*(U(J + 1,M) - U(J,M)))

        + 4*(Q(J + 1,M + 1) + Q(J + 1,M)) - 4*(Q(J,M + 1) + Q(J,M))))

          -1
/8 + (3*HT  *((N(J + 1,M + 1) + N(J + 1,M))

              *(TT(J + 1,M + 1) - TT(J + 1,M))

               + (N(J,M + 1) + N(J,M))*(TT(J,M + 1) - TT(J,M)))*K)/8

   =   0


   -1
(HX  *(5*(((N(J + 1,M + 1)*TT(J + 1,M + 1) + N(J,M + 1)*TT(J,M + 1))

           *(U(J + 1,M + 1) - U(J,M + 1)) + 

           (N(J + 1,M)*TT(J + 1,M) + N(J,M)*TT(J,M))

           *(U(J + 1,M) - U(J,M)))*K + (P(J + 1,M + 1) + P(J,M + 1))

          *(U(J + 1,M + 1) - U(J,M + 1)) + 

          (P(J + 1,M + 1) - P(J,M + 1))*(U(J + 1,M + 1) + U(J,M + 1))

           + (P(J + 1,M) + P(J,M))*(U(J + 1,M) - U(J,M))

           + (P(J + 1,M) - P(J,M))*(U(J + 1,M) + U(J,M)))

        + 4*(Q(J + 1,M + 1) + Q(J + 1,M)) - 4*(Q(J,M + 1) + Q(J,M))))

         -1
       HT  *(P(J + 1,M + 1) - P(J + 1,M) + P(J,M + 1) - P(J,M))
/20 + ----------------------------------------------------------
                                  2

   =   0


   -1
(HX  *(2*((N(J + 1,M + 1)*TT(J + 1,M + 1) + N(J,M + 1)*TT(J,M + 1))

          *(P(J + 1,M + 1) - P(J,M + 1)) + 

          (N(J + 1,M)*TT(J + 1,M) + N(J,M)*TT(J,M))

          *(P(J + 1,M) - P(J,M)))*K*M + 5*(

          (N(J + 1,M + 1)*TT(J + 1,M + 1) + N(J,M + 1)*TT(J,M + 1))

          *(TT(J + 1,M + 1) - TT(J,M + 1)) + 

          (N(J + 1,M)*TT(J + 1,M) + N(J,M)*TT(J,M))

                                     2
          *(TT(J + 1,M) - TT(J,M)))*K  - 2*(

          (P(J + 1,M + 1) + P(J,M + 1))*(P(J + 1,M + 1) - P(J,M + 1))

           + (P(J + 1,M) + P(J,M))*(P(J + 1,M) - P(J,M)))*M + 2*(

          (Q(J + 1,M + 1) + Q(J,M + 1))*(U(J + 1,M + 1) - U(J,M + 1))

           + (Q(J + 1,M) + Q(J,M))*(U(J + 1,M) - U(J,M)))*M + 2*(

          (Q(J + 1,M + 1) - Q(J,M + 1))*(U(J + 1,M + 1) + U(J,M + 1))

           + (Q(J + 1,M) - Q(J,M))*(U(J + 1,M) + U(J,M)))*M))/(8*M)

      -1
    HT  *(Q(J + 1,M + 1) - Q(J + 1,M) + Q(J,M + 1) - Q(J,M))
 + ----------------------------------------------------------   =   0
                               2



clear a;



remfac diff,ht,hx,hy;


on exp;


off rat;



%***********************************************************************
%*****                                                             *****
%*****     T e s t     Examples   ---   Module    A P P R O X      *****
%*****                                                             *****
%***********************************************************************

% Example A.1

coordinates x,t into j,n;


maxorder t=2,x=3;


functions u,v;


approx( (u(n+1/2)-u(n-1/2))/ht=(v(n+1/2,j+1/2)-v(n+1/2,j-1/2)
                               +v(n-1/2,j+1/2)-v(n-1/2,j-1/2))/(2*hx) );


 Difference scheme approximates differential equation DF(U,T)=DF(V,X)

 with orders of approximation:

  2
HX

  2
HT


% Example A.2

maxorder t=3,x=3;


approx( (u(n+1)-u(n))/ht=(u(n+1,j+1/2)-u(n+1,j-1/2)
                               +u(n,j+1/2)-u(n,j-1/2))/(2*hx) );


 Difference scheme approximates differential equation DF(U,T)=DF(U,X)

 with orders of approximation:

  2
HX

HT


% Example A.3

maxorder t=2,x=3;


center t=1/2;


approx( (u(n+1)-u(n))/ht=(v(n+1,j+1/2)-v(n+1,j-1/2)
                               +v(n,j+1/2)-v(n,j-1/2))/(2*hx) );


 Difference scheme approximates differential equation DF(U,T)=DF(V,X)

 with orders of approximation:

  2
HX

  2
HT


% Example A.4

approx( u(n+1)/ht=(v(n+1,j+1/2)-v(n+1,j-1/2)
                               +v(n,j+1/2)-v(n,j-1/2))/(2*hx) );


 Reformulate difference scheme, grid steps remain in denominators

 Difference scheme approximates differential equation 0=DF(V,X)

 with orders of approximation:

  2
HX

  -1
HT


% Example A.5

maxorder t=3,x=3;


approx( (u(n+1)-u(n))/ht=(u(n+1,j+1/2)-u(n+1,j-1/2))/hx);


 Difference scheme approximates differential equation DF(U,T)=DF(U,X)

 with orders of approximation:

  2
HX

HT


% Example A.6

approx( (u(n+1)-u(n))/ht=(u(n+1/2,j+1/2)-u(n+1/2,j-1/2))/hx);


 Difference scheme approximates differential equation DF(U,T)=DF(U,X)

 with orders of approximation:

  2
HX

  2
HT


% Example A.7;

approx((u(n+1)-u(n))/ht=(u(n+1/2,j+1)-2*u(n+1/2,j)+u(n+1/2,j-1))/hx**2);


 Difference scheme approximates differential equation DF(U,T)

=DF(U,X,2)

 with orders of approximation:

1

  2
HT


%***********************************************************************
%*****                                                             *****
%*****     T e s t     Examples   ---   Module    C H A R P O L    *****
%*****                                                             *****
%***********************************************************************

% Example C.1

coordinates t,x into i,j;


grid uniform,t,x;


let cos ax**2=1-sin ax**2;


unfunc u,v;


matrix aa(1,2),bb(2,2);


aa(1,1):=(u(i+1)-u(i))/ht+(v(j+1)-v(j))/hx$


aa(1,2):=(v(i+1)-v(i))/ht+(u(j+1/2)-u(j-1/2))/hx$


bb:=ampmat aa;


       KX*HX
AX := -------
         2


      [HX  0 ]
H1 := [      ]
      [0   HX]


                         2                                2
H0 := MAT((HX,HT*(SIN(AX)  - 2*SIN(AX)*COS(AX)*I - COS(AX)  + 1)),

          ( - 2*SIN(AX)*I*HT,HX))


      [                      2*SIN(AX)*HT*(SIN(AX) - COS(AX)*I) ]
      [         1           ------------------------------------]
      [                                      HX                 ]
BB := [                                                         ]
      [  - 2*SIN(AX)*I*HT                                       ]
      [-------------------                   1                  ]
      [        HX                                               ]


bb:=denotemat bb;


      [  1     I*AI12 + AR12]
BB := [                     ]
      [I*AI21        1      ]


factor lam;


pol:=charpol bb;


          2
POL := LAM  - 2*LAM - I*AR12*AI21 + AI12*AI21 + 1

prdenot;


                  2
         2*SIN(AX) *HT
AR12 := ---------------
              HX

          - 2*SIN(AX)*COS(AX)*HT
AI12 := -------------------------
                   HX

          - 2*SIN(AX)*HT
AI21 := -----------------
               HX

cleardenot;


clear aa,bb,pol;



%***********************************************************************

% Example C.2 : Reprint Vorozcov, Ganza, Mazurik: Simvolno-cislennyj
%               interfejs.  v zadacach ..., Novosibirsk 1986,  p.47.

unfunc u;


matrix aa(1,1),bb(1,1);


aa(1,1):=(u(i+1)-u(i))/ht+a*(u(j)-u(j-1))/hx$


bb:=ampmat aa;


AX := KX*HX


H1 := [HX]


H0 := [ - SIN(AX)*A*I*HT + COS(AX)*A*HT - A*HT + HX]


      [  - SIN(AX)*A*I*HT + COS(AX)*A*HT - A*HT + HX ]
BB := [----------------------------------------------]
      [                      HX                      ]


bb:=denotemat bb;


BB := [I*AI11 + AR11]


pol:=charpol bb;


POL := LAM - (I*AI11 + AR11)

prdenot;


         COS(AX)*A*HT - A*HT + HX
AR11 := --------------------------
                    HX

          - SIN(AX)*A*HT
AI11 := -----------------
               HX

cleardenot;


clear aa,bb,pol;



%***********************************************************************

% Example C.3 : Reprint Vorozcov, Ganza, Mazurik: Simvolno-cislennyj
%               interfejs.  v zadacach ..., Novosibirsk 1986,  p.52.

coordinates t,x into m,j;


unfunc u,r;


matrix aa(1,2),bb(2,2);


aa(1,1):=(r(m+1)-r(m))/ht+u0*(r(m+1,j+1)-r(m+1,j-1))/2/hx
                         +r0*(u(m+1,j+1)-u(m+1,j-1))/2/hx$


aa(1,2):=(u(m+1)-u(m))/ht+u0*(u(m+1,j+1)-u(m+1,j-1))/2/hx
                         +c0**2/r0*(r(m,j+1)-u(m,j-1))/2/hx$


bb:=ampmat aa;


AX := KX*HX


      [      SIN(AX)*I*HT*R0        SIN(AX)*I*HT*U0 + HX]
H1 := [                                                 ]
      [2*R0*(SIN(AX)*I*HT*U0 + HX)           0          ]


H0 := MAT((0,HX),

                             2                2
          ( - SIN(AX)*I*HT*C0  + COS(AX)*HT*C0  + 2*HX*R0,

                   2
            - HT*C0 *(SIN(AX)*I + COS(AX))))


                      2   2      2                       2      2
BB := MAT((( - SIN(AX) *HT *U0*C0  - SIN(AX)*COS(AX)*I*HT *U0*C0

                                                           2
             - 2*SIN(AX)*I*HX*HT*U0*R0 - SIN(AX)*I*HX*HT*C0

                               2       2
             + COS(AX)*HX*HT*C0  + 2*HX *R0)/(2*R0

                       2   2   2     2         2            2
              *(SIN(AX) *HT *U0  + HX )),(HT*C0 *( - SIN(AX) *HT*U0

                  + SIN(AX)*COS(AX)*I*HT*U0 - SIN(AX)*I*HX

                                               2   2   2     2
                  - COS(AX)*HX))/(2*R0*(SIN(AX) *HT *U0  + HX ))),

                               3   3   2   2
          ((SIN(AX)*HT*(SIN(AX) *HT *U0 *C0

                         2             3   2   2
                + SIN(AX) *COS(AX)*I*HT *U0 *C0

                           2        2   2
                + 2*SIN(AX) *I*HX*HT *U0 *R0

                           2        2      2
                + 2*SIN(AX) *I*HX*HT *U0*C0

                                         2      2
                - 2*SIN(AX)*COS(AX)*HX*HT *U0*C0

                              2                      2      2
                - 4*SIN(AX)*HX *HT*U0*R0 - SIN(AX)*HX *HT*C0

                              2      2         3
                - COS(AX)*I*HX *HT*C0  - 2*I*HX *R0))/(2

                       4   4   4            2   2   2   2     4
              *(SIN(AX) *HT *U0  + 2*SIN(AX) *HX *HT *U0  + HX )),(

                     4   4   2   2          3             4   2   2
              SIN(AX) *HT *U0 *C0  - SIN(AX) *COS(AX)*I*HT *U0 *C0

                          3        3   3            3        3      2
               - 2*SIN(AX) *I*HX*HT *U0  + 2*SIN(AX) *I*HX*HT *U0*C0

                          2              3      2
               + 2*SIN(AX) *COS(AX)*HX*HT *U0*C0

                          2   2   2   2          2   2   2   2
               + 2*SIN(AX) *HX *HT *U0  - SIN(AX) *HX *HT *C0

                                     2   2   2
               + SIN(AX)*COS(AX)*I*HX *HT *C0

                               3             4
               - 2*SIN(AX)*I*HX *HT*U0 + 2*HX )/(2

                       4   4   4            2   2   2   2     4
              *(SIN(AX) *HT *U0  + 2*SIN(AX) *HX *HT *U0  + HX ))))


bb:=denotemat bb;


      [I*AI11 + AR11  I*AI12 + AR12]
BB := [                            ]
      [I*AI21 + AR21  I*AI22 + AR22]


pol:=charpol bb;


          2
POL := LAM  - LAM*(I*AI11 + I*AI22 + AR11 + AR22) - I*AR12*AI21

        - I*AI12*AR21 + I*AR11*AI22 + I*AI11*AR22 - AR12*AR21

        + AI12*AI21 + AR11*AR22 - AI11*AI22

prdenot;


                   2   2      2                   2       2
          - SIN(AX) *HT *U0*C0  + COS(AX)*HX*HT*C0  + 2*HX *R0
AR11 := -------------------------------------------------------
                                  2   2   2     2
                     2*R0*(SIN(AX) *HT *U0  + HX )

                                        2                     2
         SIN(AX)*HT*( - COS(AX)*HT*U0*C0  - 2*HX*U0*R0 - HX*C0 )
AI11 := ---------------------------------------------------------
                                   2   2   2     2
                      2*R0*(SIN(AX) *HT *U0  + HX )

                 2         2
          - HT*C0 *(SIN(AX) *HT*U0 + COS(AX)*HX)
AR12 := -----------------------------------------
                           2   2   2     2
              2*R0*(SIN(AX) *HT *U0  + HX )

                      2
         SIN(AX)*HT*C0 *(COS(AX)*HT*U0 - HX)
AI12 := -------------------------------------
                         2   2   2     2
            2*R0*(SIN(AX) *HT *U0  + HX )

                2   2         2   2   2   2                        2
AR21 := (SIN(AX) *HT *(SIN(AX) *HT *U0 *C0  - 2*COS(AX)*HX*HT*U0*C0

                   2           2   2
             - 4*HX *U0*R0 - HX *C0 ))/(2

                    4   4   4            2   2   2   2     4
           *(SIN(AX) *HT *U0  + 2*SIN(AX) *HX *HT *U0  + HX ))

                            2           3   2   2
AI21 := (SIN(AX)*HT*(SIN(AX) *COS(AX)*HT *U0 *C0

                        2      2   2               2      2      2
             + 2*SIN(AX) *HX*HT *U0 *R0 + 2*SIN(AX) *HX*HT *U0*C0

                         2      2       3
             - COS(AX)*HX *HT*C0  - 2*HX *R0))/(2

                    4   4   4            2   2   2   2     4
           *(SIN(AX) *HT *U0  + 2*SIN(AX) *HX *HT *U0  + HX ))

                4   4   2   2            2              3      2
AR22 := (SIN(AX) *HT *U0 *C0  + 2*SIN(AX) *COS(AX)*HX*HT *U0*C0

                     2   2   2   2          2   2   2   2       4
          + 2*SIN(AX) *HX *HT *U0  - SIN(AX) *HX *HT *C0  + 2*HX )/(2

                    4   4   4            2   2   2   2     4
           *(SIN(AX) *HT *U0  + 2*SIN(AX) *HX *HT *U0  + HX ))

                               2           3   2   2
AI22 := (SIN(AX)*HT*( - SIN(AX) *COS(AX)*HT *U0 *C0

                        2      2   3            2      2      2
             - 2*SIN(AX) *HX*HT *U0  + 2*SIN(AX) *HX*HT *U0*C0

                         2      2       3
             + COS(AX)*HX *HT*C0  - 2*HX *U0))/(2

                    4   4   4            2   2   2   2     4
           *(SIN(AX) *HT *U0  + 2*SIN(AX) *HX *HT *U0  + HX ))

cleardenot;


clear aa,bb,pol;



%***********************************************************************

% Example C.4 : Richtmyer, Morton: Difference methods for initial value
%               problems, &10.3.  p.262

coordinates t,x into n,j;


unfunc v,w;


matrix aa(1,2),bb(2,2);


aa(1,1):=(v(n+1)-v(n))/ht-c*(w(j+1/2)-w(j-1/2)+
                             w(n+1,j+1/2)-w(n+1,j-1/2))/(2*hx)$


aa(1,2):=(w(n+1,j-1/2)-w(n,j-1/2))/ht-c*(v(n+1,j)-v(n+1,j-1)+
                                         v(j)-v(j-1))/(2*hx)$


bb:=ampmat aa;


       KX*HX
AX := -------
         2


H1 := MAT((HX, - SIN(AX)*C*I*HT),

                           2                                2
          (C*HT*( - SIN(AX)  - 2*SIN(AX)*COS(AX)*I + COS(AX)  - 1),

           2*HX*( - SIN(AX)*I + COS(AX))))


H0 := MAT((HX,SIN(AX)*C*I*HT),

                        2                                2
          (C*HT*(SIN(AX)  + 2*SIN(AX)*COS(AX)*I - COS(AX)  + 1),

           2*HX*( - SIN(AX)*I + COS(AX))))


      [           2  2   2     2                             ]
      [  - SIN(AX) *C *HT  + HX       2*SIN(AX)*C*I*HX*HT    ]
      [--------------------------   -----------------------  ]
      [         2  2   2     2              2  2   2     2   ]
      [  SIN(AX) *C *HT  + HX        SIN(AX) *C *HT  + HX    ]
BB := [                                                      ]
      [                                       2  2   2     2 ]
      [   2*SIN(AX)*C*I*HX*HT        - SIN(AX) *C *HT  + HX  ]
      [ -----------------------    --------------------------]
      [         2  2   2     2              2  2   2     2   ]
      [  SIN(AX) *C *HT  + HX        SIN(AX) *C *HT  + HX    ]


bb:=denotemat bb;


      [ AR11   I*AI12]
BB := [              ]
      [I*AI21   AR22 ]


pol:=charpol bb;


          2
POL := LAM  - LAM*(AR11 + AR22) + AI12*AI21 + AR11*AR22

prdenot;


                   2  2   2     2
          - SIN(AX) *C *HT  + HX
AR11 := --------------------------
                 2  2   2     2
          SIN(AX) *C *HT  + HX

           2*SIN(AX)*C*HX*HT
AI12 := -----------------------
                2  2   2     2
         SIN(AX) *C *HT  + HX

           2*SIN(AX)*C*HX*HT
AI21 := -----------------------
                2  2   2     2
         SIN(AX) *C *HT  + HX

                   2  2   2     2
          - SIN(AX) *C *HT  + HX
AR22 := --------------------------
                 2  2   2     2
          SIN(AX) *C *HT  + HX

cleardenot;


clear aa,bb,pol;



%***********************************************************************

% Example C.5: Mazurik: Algoritmy resenia zadaci..., Preprint no.24-85,
%               AN USSR SO, Inst. teor. i prikl. mechaniky, p.34

coordinates t,x,y into n,m,k;


grid uniform,t,x,y;


unfunc u1,u2,u3;


matrix aa(1,3),bb(3,3);


aa(1,1):=(u1(n+1)-u1(n))/ht+c/2*((-u1(m-1)+2*u1(m)-u1(m+1))/hx +
         (u2(m+1)-u2(m-1))/hx - (u1(k-1)-2*u1(k)+u1(k+1))/hy +
         (u3(k+1)-u3(k-1))/hy)$


aa(1,2):=(u2(n+1)-u2(n))/ht+c/2*((u1(m+1)-u1(m-1))/hx -
         (u2(m-1)-2*u2(m)+u2(m+1))/hx)$


aa(1,3):=(u3(n+1)-u3(n))/ht + c/2*((u1(k+1)-u1(k-1))/hy -
         (u3(k-1)-2*u3(k)+u3(k+1))/hy)$


off prfourmat;


bb:=ampmat aa;


AX := KX*HX


AY := KY*HY


BB := MAT(((COS(AX)*C*HY*HT + COS(AY)*C*HX*HT - C*HY*HT - C*HX*HT

                                - SIN(AX)*C*I*HT    - SIN(AY)*C*I*HT
             + HY*HX)/(HY*HX),-------------------,-------------------
                                      HX                  HY

           ),

             - SIN(AX)*C*I*HT   COS(AX)*C*HT - C*HT + HX
          (-------------------,--------------------------,0),
                   HX                      HX

             - SIN(AY)*C*I*HT     COS(AY)*C*HT - C*HT + HY
          (-------------------,0,--------------------------))
                   HY                        HY


pol:=charpol bb;


           3   2   2      2
POL := (LAM *HY *HX  + LAM *HY*HX*( - 2*COS(AX)*C*HY*HT

            - 2*COS(AY)*C*HX*HT + 2*C*HY*HT + 2*C*HX*HT - 3*HY*HX) + 

                    2  2   2   2                      2         2
        LAM*(SIN(AY) *C *HX *HT  + 3*COS(AX)*COS(AY)*C *HY*HX*HT

                           2   2   2              2         2
              - 2*COS(AX)*C *HY *HT  - 3*COS(AX)*C *HY*HX*HT

                              2                2  2   2   2
              + 4*COS(AX)*C*HY *HX*HT + COS(AY) *C *HX *HT

                           2         2              2   2   2
              - 3*COS(AY)*C *HY*HX*HT  - 2*COS(AY)*C *HX *HT

                                 2         2   2   2      2         2
              + 4*COS(AY)*C*HY*HX *HT + 2*C *HY *HT  + 3*C *HY*HX*HT

                 2   2   2         2                  2
              + C *HX *HT  - 4*C*HY *HX*HT - 4*C*HY*HX *HT

                    2   2           2          3      3
              + 3*HY *HX ) - SIN(AY) *COS(AX)*C *HX*HT

                  2  3      3          2  2   2   2
         + SIN(AY) *C *HX*HT  - SIN(AY) *C *HX *HT

                          2  3      3                      3      3
         - COS(AX)*COS(AY) *C *HX*HT  + 2*COS(AX)*COS(AY)*C *HY*HT

                              3      3
         + 2*COS(AX)*COS(AY)*C *HX*HT

                              2         2              3      3
         - 3*COS(AX)*COS(AY)*C *HY*HX*HT  - 2*COS(AX)*C *HY*HT

                    3      3              2   2   2
         - COS(AX)*C *HX*HT  + 2*COS(AX)*C *HY *HT

                      2         2                 2
         + 3*COS(AX)*C *HY*HX*HT  - 2*COS(AX)*C*HY *HX*HT

                  2  3      3          2  2   2   2
         + COS(AY) *C *HX*HT  - COS(AY) *C *HX *HT

                      3      3              3      3
         - 2*COS(AY)*C *HY*HT  - 2*COS(AY)*C *HX*HT

                      2         2              2   2   2
         + 3*COS(AY)*C *HY*HX*HT  + 2*COS(AY)*C *HX *HT

                            2         3      3    3      3
         - 2*COS(AY)*C*HY*HX *HT + 2*C *HY*HT  + C *HX*HT

              2   2   2      2         2    2   2   2         2
         - 2*C *HY *HT  - 3*C *HY*HX*HT  - C *HX *HT  + 2*C*HY *HX*HT

                    2        2   2     2   2
         + 2*C*HY*HX *HT - HY *HX )/(HY *HX )

let
  cos ax=cos ax2**2-sin ax2**2,
  cos ay=cos ay2**2-sin ay2**2,
  sin ax=2*sin ax2*cos ax2,
  sin ay=2*sin ay2*cos ay2,
  cos ax2**2=1-sin ax2**2,
  cos ay2**2=1-sin ay2**2,
  sin ax2=s1,
  sin ay2=s2,
  hx=c*ht/cap1,
  hy=c*ht/cap2;


order s1,s2;


pol:=pol;


          3      2      2            2
POL := LAM  + LAM *(4*S1 *CAP1 + 4*S2 *CAP2 - 3) + LAM*(

               2   2                 2     2       2
          12*S1 *S2 *CAP1*CAP2 + 4*S1 *CAP1  - 8*S1 *CAP1

                 2     2       2                 2   2     2
           + 4*S2 *CAP2  - 8*S2 *CAP2 + 3) + 8*S1 *S2 *CAP1 *CAP2

              2   2          2        2   2                 2     2
        + 8*S1 *S2 *CAP1*CAP2  - 12*S1 *S2 *CAP1*CAP2 - 4*S1 *CAP1

              2            2     2       2
        + 4*S1 *CAP1 - 4*S2 *CAP2  + 4*S2 *CAP2 - 1

clear cos ax,cos ay,sin ax,sin ay,cos ax2**2,cos ay2**2,sin ax2,sin ay2,
      hx,hy;


pol:=complexpol pol;


         2   2
 If  8*S1 *S2 *CAP1*CAP2*(CAP1 + CAP2)  =  0  and  0

  =  0  , a root of the polynomial is equal to 1.

          3      2      2            2
POL := LAM  + LAM *(4*S1 *CAP1 + 4*S2 *CAP2 - 3) + LAM*(

               2   2                 2     2       2
          12*S1 *S2 *CAP1*CAP2 + 4*S1 *CAP1  - 8*S1 *CAP1

                 2     2       2                 2   2     2
           + 4*S2 *CAP2  - 8*S2 *CAP2 + 3) + 8*S1 *S2 *CAP1 *CAP2

              2   2          2        2   2                 2     2
        + 8*S1 *S2 *CAP1*CAP2  - 12*S1 *S2 *CAP1*CAP2 - 4*S1 *CAP1

              2            2     2       2
        + 4*S1 *CAP1 - 4*S2 *CAP2  + 4*S2 *CAP2 - 1

pol1:=hurw pol;


             3   2   2                                2
POL1 := 8*LAM *S1 *S2 *CAP1*CAP2*(CAP1 + CAP2) + 8*LAM *(

                  2   2     2            2   2          2
            - 3*S1 *S2 *CAP1 *CAP2 - 3*S1 *S2 *CAP1*CAP2

                  2   2               2     2     2     2
            + 3*S1 *S2 *CAP1*CAP2 + S1 *CAP1  + S2 *CAP2 ) + 8*LAM*(

               2   2     2            2   2          2
           3*S1 *S2 *CAP1 *CAP2 + 3*S1 *S2 *CAP1*CAP2

                  2   2                 2     2       2
            - 6*S1 *S2 *CAP1*CAP2 - 2*S1 *CAP1  + 2*S1 *CAP1

                  2     2       2                 2   2     2
            - 2*S2 *CAP2  + 2*S2 *CAP2) + 8*( - S1 *S2 *CAP1 *CAP2

                2   2          2       2   2               2     2
            - S1 *S2 *CAP1*CAP2  + 3*S1 *S2 *CAP1*CAP2 + S1 *CAP1

                  2          2     2       2
            - 2*S1 *CAP1 + S2 *CAP2  - 2*S2 *CAP2 + 1)

denotid cp;


pol:=denotepol pol;


          3      2
POL := LAM  + LAM *CPR02 + LAM*CPR01 + CPR00

prdenot;


             2   2     2            2   2          2
CPR00 := 8*S1 *S2 *CAP1 *CAP2 + 8*S1 *S2 *CAP1*CAP2

                 2   2                 2     2       2
          - 12*S1 *S2 *CAP1*CAP2 - 4*S1 *CAP1  + 4*S1 *CAP1

                2     2       2
          - 4*S2 *CAP2  + 4*S2 *CAP2 - 1

              2   2                 2     2       2
CPR01 := 12*S1 *S2 *CAP1*CAP2 + 4*S1 *CAP1  - 8*S1 *CAP1

                2     2       2
          + 4*S2 *CAP2  - 8*S2 *CAP2 + 3

             2            2
CPR02 := 4*S1 *CAP1 + 4*S2 *CAP2 - 3

cleardenot;


clear aa,bb,pol,pol1;



%***********************************************************************

% Example C.6 : Lax-Wendrov (V. Ganzha)

coordinates t,x,y into n,m,k;


grid uniform,t,x,y;


let cos ax**2=1-sin ax**2,
    cos ay**2=1-sin ay**2;


unfunc u1,u2,u3,u4;


matrix aa(1,4),bb(4,4);


aa(1,1):=4*(u1(n+1)-u1(n))/ht+
         (w*(u1(m+2)-u1(m-2)+u1(m+1,k+1)+u1(m+1,k-1)-
         u1(m-1,k+1)-u1(m-1,k-1))+p*(u2(m+2)-u2(m-2)+u2(m+1,k+1)+
         u2(m+1,k-1)-u2(m-1,k+1)-u2(m-1,k-1))+
         v*(u1(m+1,k+1)+u1(m-1,k+1)-
         u1(m+1,k-1)-u1(m-1,k-1)+u1(k+2)-u1(k-2))+p*(u3(m+1,k+1)+
         u3(m-1,k+1)-u3(m+1,k-1)-u3(m-1,k-1)+u3(k+2)-u3(k-2)))/hx+ht*
         (2*w**2*(-u1(m+2)+2*u1(m)-u1(m-2))+4*w*p*(-u2(m+2)+2*u2(m)-
         u2(m-2))+2*(-u4(m+2)+2*u4(m)-u4(m-2))+2*v**2*(-u1(k+2)+
         2*u1(k)-u1(k-2))+4*v*p*(u3(k+2)+2*u3(k)-u3(k-2))+2*(-u4(k+2)+
         2*u4(k)-u4(k-2))+4*w*v*(-u1(m+1,k+1)+u1(m+1,k-1)+u1(m-1,k+1)-
         u1(m-1,k-1))+4*p*v*(-u2(m+1,k+1)+u2(m+1,k-1)+u2(m-1,k+1)-
         u2(m-1,k-1))+4*w*p*(-u3(m+1,k+1)+u3(m+1,k-1)+u3(m-1,k+1)-
         u3(m-1,k-1)))/hx/hx$


aa(1,2):=4*p*(u2(n+1)-u2(n))/ht+
       (w*p*(u2(m+2)-u2(m-2)+u2(m+1,k+1)+
         u2(m+1,k-1)-u2(m-1,k+1)-u2(m-1,k-1))+u4(m+2)-u4(m-2)+
         u4(m+1,k+1)+
         u4(m+1,k-1)-u4(m-1,k+1)-u4(m-1,k-1)+
         p*v*(u2(m+1,k+1)+u2(m-1,k+1)+
         u2(k+2)-u2(k-2)-u2(m+1,k-1)-u2(m-1,k-1)))/hx+ht*(2*w**2*p*
         (-u2(m+2)+2*u2(m)-u2(m-2))+2*p*c**2*(-u2(m+2)+2*u2(m)-u2(m-2))
         +4*w*(-u4(m+2)+2*u4(m)-u4(m-2))+2*p*v**2*(-u2(k+2)+2*u2(k)-
         u2(k-2))+4*w*p*v*(-u2(m+1,k+1)+u2(m+1,k-1)+u2(m-1,k+1)-
         u2(m-1,k-1))+2*p*c**2*(-u3(m+1,k+1)+u3(m+1,k-1)+u3(m-1,k+1)
         -u3(m-1,k-1))+4*v*(-u4(m+1,k+1)+u4(m+1,k-1)+u4(m-1,k+1)-
         u4(m-1,k-1)))/hx/hx$


aa(1,3):=4*p*(u3(n+1)-u3(n))/ht+(w*p*(u3(m+2)-u3(m-2)+u3(m+1,k+1)+
         u3(m+1,k-1)-u3(m-1,k+1)-u3(m-1,k-1))+u4(k+2)-u4(k-2)+
         u4(m+1,k+1)-u4(m+1,k-1)+u4(m-1,k+1)-u4(m-1,k-1)+
         p*v*(u3(m+1,k+1)+u3(m-1,k+1)+u3(k+2)-u3(k-2)-u3(m+1,k-1)-
         u3(m-1,k-1)))/hx+ht*(2*w**2*p*(-u3(m+2)+2*u3(m)-u3(m-2))+
         2*p*c**2*(-u3(k+2)+2*u3(k)-u3(k-2))+4*v*(-u4(k+2)+
         2*u4(k)-u4(k-2))+2*p*v**2*(-u3(k+2)+2*u3(k)-u3(k-2))+
         4*w*p*v*(-u3(m+1,k+1)+u3(m+1,k-1)+u3(m-1,k+1)-
         u3(m-1,k-1))+2*p*c**2*(-u2(m+1,k+1)+u2(m+1,k-1)+
         u2(m-1,k+1)-u2(m-1,k-1))+4*w*(u4(m+1,k+1)+u4(m+1,k-1)+
         u4(m-1,k+1)-u4(m-1,k-1)))/hx/hx$


aa(1,4):=4*(u4(n+1)-u4(n))/ht+(p*c**2*(u2(m+2)-u2(m-2)+u2(m+1,k+1)+
         u2(m+1,k-1)-u2(m-1,k+1)-u2(m-1,k-1))+w*(u4(m+2)-
         u4(m-2)+u4(m+1,k+1)+u4(m+1,k-1)-u4(m-1,k+1)-u4(m-1,k-1))+
         +p*c**2*(u3(m+1,k+1)+u3(m-1,k+1)-u3(m+1,k-1)-
         u3(m-1,k-1)+u3(k+2)-u3(k-2))+v*(u4(m+1,k+1)+u4(m-1,k+1)-
         u4(m+1,k-1)-u4(m-1,k-1)+u4(k+2)-u4(k-2)))/hx+ht*
         (2*w**2*(-u4(m+2)+2*u4(m)-u4(m-2))+4*w*p*c**2*(-u2(m+2)+
         2*u2(m)-u2(m-2))+2*c**2*(-u4(m+2)+2*u4(m)-u4(m-2))+
         4*p*v*c**2*(-u3(k+2)+2*u3(k)-u3(k-2))+2*c**2*(-u4(k+2)+
         2*u4(k)-u4(k-2))+2*v**2*(-u4(k+2)+2*u4(k)-u4(k-2))+
         4*p*v*c**2*(-u2(m+1,k+1)+u2(m+1,k-1)+u2(m-1,k+1)-
         u2(m-1,k-1))+4*w*p*c**2*(-u3(m+1,k+1)+u3(m+1,k-1)+
         u3(m-1,k+1)-u3(m-1,k-1))+4*w*v*(-u4(m+1,k+1)+
         u4(m+1,k-1)+u4(m-1,k+1)-u4(m-1,k-1)))/hx/hx$


bb:=ampmat aa;


AX := KX*HX


AY := KY*HY


                        2  2   2                           2
BB := MAT((( - 2*SIN(AX) *W *HT  - 4*SIN(AX)*SIN(AY)*V*W*HT

             - SIN(AX)*COS(AX)*I*W*HX*HT - SIN(AX)*COS(AY)*I*W*HX*HT

                        2  2   2
             - 2*SIN(AY) *V *HT  - SIN(AY)*COS(AX)*I*V*HX*HT

                                             2    2
             - SIN(AY)*COS(AY)*I*V*HX*HT + HX )/HX ,(SIN(AX)*P*HT*(

                  - 4*SIN(AX)*W*HT - 4*SIN(AY)*V*HT - COS(AX)*I*HX

                                     2
                  - COS(AY)*I*HX))/HX ,(P*HT*(

                  - 4*SIN(AX)*SIN(AY)*W*HT - SIN(AY)*COS(AX)*I*HX

                  - 4*SIN(AY)*COS(AY)*I*V*HT - SIN(AY)*COS(AY)*I*HX

                                         2         2          2
                               2   - 2*HT *(SIN(AX)  + SIN(AY) )
                  - 2*V*HT))/HX ,--------------------------------),
                                                 2
                                               HX

                          2  2   2            2  2   2
          (0,( - 2*SIN(AX) *C *HT  - 2*SIN(AX) *W *HT

                                         2
               - 4*SIN(AX)*SIN(AY)*V*W*HT

               - SIN(AX)*COS(AX)*I*W*HX*HT

                                                      2  2   2
               - SIN(AX)*COS(AY)*I*W*HX*HT - 2*SIN(AY) *V *HT

               - SIN(AY)*COS(AX)*I*V*HX*HT

                                               2    2
               - SIN(AY)*COS(AY)*I*V*HX*HT + HX )/HX ,

                                  2   2
             - 2*SIN(AX)*SIN(AY)*C *HT
           -----------------------------,(SIN(AX)*HT*(
                          2
                        HX

                  - 4*SIN(AX)*W*HT - 4*SIN(AY)*V*HT - COS(AX)*I*HX

                                        2
                  - COS(AY)*I*HX))/(P*HX )),

                                    2   2
               - 2*SIN(AX)*SIN(AY)*C *HT                2  2   2
          (0,-----------------------------,( - 2*SIN(AX) *W *HT
                            2
                          HX

                                         2
               - 4*SIN(AX)*SIN(AY)*V*W*HT

               - SIN(AX)*COS(AX)*I*W*HX*HT

                                                      2  2   2
               - SIN(AX)*COS(AY)*I*W*HX*HT - 2*SIN(AY) *C *HT

                          2  2   2
               - 2*SIN(AY) *V *HT  - SIN(AY)*COS(AX)*I*V*HX*HT

                                               2    2
               - SIN(AY)*COS(AY)*I*V*HX*HT + HX )/HX ,(HT*(

                  - 2*SIN(AX)*SIN(AY)*W*HT - 2*SIN(AX)*COS(AY)*I*W*HT

                             2
                  - 4*SIN(AY) *V*HT - 2*SIN(AY)*COS(AX)*I*W*HT

                  - SIN(AY)*COS(AX)*I*HX - SIN(AY)*COS(AY)*I*HX

                                                  2
                  - 2*COS(AX)*COS(AY)*W*HT))/(P*HX )),

                       2
          (0,(SIN(AX)*C *P*HT*( - 4*SIN(AX)*W*HT - 4*SIN(AY)*V*HT

                                                    2           2
                  - COS(AX)*I*HX - COS(AY)*I*HX))/HX ,(SIN(AY)*C *P

              *HT*( - 4*SIN(AX)*W*HT - 4*SIN(AY)*V*HT - COS(AX)*I*HX

                                     2              2  2   2
                  - COS(AY)*I*HX))/HX ,( - 2*SIN(AX) *C *HT

                          2  2   2                           2
               - 2*SIN(AX) *W *HT  - 4*SIN(AX)*SIN(AY)*V*W*HT

               - SIN(AX)*COS(AX)*I*W*HX*HT

                                                      2  2   2
               - SIN(AX)*COS(AY)*I*W*HX*HT - 2*SIN(AY) *C *HT

                          2  2   2
               - 2*SIN(AY) *V *HT  - SIN(AY)*COS(AX)*I*V*HX*HT

                                               2    2
               - SIN(AY)*COS(AY)*I*V*HX*HT + HX )/HX ))


let
  sin(ax)=s1,
  cos(ax)=c1,
  sin(ay)=s2,
  cos(ay)=c2,
  w=k1*hx/ht,
  v=k2*hx/ht,
  c=k3*hx/ht,
  ht=r1*hx;


denotid a;


bb:=denotemat bb;


      [I*AI11 + AR11  I*AI12 + AR12  I*AI13 + AR13      AR14     ]
      [                                                          ]
      [      0        I*AI22 + AR22      AR23       I*AI24 + AR24]
BB := [                                                          ]
      [      0            AR32       I*AI33 + AR33  I*AI34 + AR34]
      [                                                          ]
      [      0        I*AI42 + AR42  I*AI43 + AR43  I*AI44 + AR44]


clear sin ax,cos ax,sin ay,cos ay,w,v,c,ht;


pol:=charpol bb;


          4      3
POL := LAM  - LAM *(I*AI11 + I*AI22 + I*AI33 + I*AI44 + AR11 + AR22

                               2
           + AR33 + AR44) + LAM *(I*AR11*AI22 + I*AR11*AI33

           + I*AR11*AI44 + I*AI11*AR22 + I*AI11*AR33 + I*AI11*AR44

           + I*AR22*AI33 + I*AR22*AI44 + I*AI22*AR33 + I*AI22*AR44

           - I*AR24*AI42 - I*AI24*AR42 + I*AR33*AI44 + I*AI33*AR44

           - I*AR34*AI43 - I*AI34*AR43 + AR11*AR22 + AR11*AR33

           + AR11*AR44 - AI11*AI22 - AI11*AI33 - AI11*AI44

           + AR22*AR33 + AR22*AR44 - AI22*AI33 - AI22*AI44

           - AR23*AR32 - AR24*AR42 + AI24*AI42 + AR33*AR44

           - AI33*AI44 - AR34*AR43 + AI34*AI43) + LAM*(

           - I*AR11*AR22*AI33 - I*AR11*AR22*AI44 - I*AR11*AI22*AR33

           - I*AR11*AI22*AR44 + I*AR11*AR24*AI42 + I*AR11*AI24*AR42

           - I*AR11*AR33*AI44 - I*AR11*AI33*AR44 + I*AR11*AR34*AI43

           + I*AR11*AI34*AR43 - I*AI11*AR22*AR33 - I*AI11*AR22*AR44

           + I*AI11*AI22*AI33 + I*AI11*AI22*AI44 + I*AI11*AR23*AR32

           + I*AI11*AR24*AR42 - I*AI11*AI24*AI42 - I*AI11*AR33*AR44

           + I*AI11*AI33*AI44 + I*AI11*AR34*AR43 - I*AI11*AI34*AI43

           - I*AR22*AR33*AI44 - I*AR22*AI33*AR44 + I*AR22*AR34*AI43

           + I*AR22*AI34*AR43 - I*AI22*AR33*AR44 + I*AI22*AI33*AI44

           + I*AI22*AR34*AR43 - I*AI22*AI34*AI43 + I*AR23*AR32*AI44

           - I*AR23*AR34*AI42 - I*AR23*AI34*AR42 - I*AR24*AR32*AI43

           + I*AR24*AR33*AI42 + I*AR24*AI33*AR42 - I*AI24*AR32*AR43

           + I*AI24*AR33*AR42 - I*AI24*AI33*AI42 - AR11*AR22*AR33

           - AR11*AR22*AR44 + AR11*AI22*AI33 + AR11*AI22*AI44

           + AR11*AR23*AR32 + AR11*AR24*AR42 - AR11*AI24*AI42

           - AR11*AR33*AR44 + AR11*AI33*AI44 + AR11*AR34*AR43

           - AR11*AI34*AI43 + AI11*AR22*AI33 + AI11*AR22*AI44

           + AI11*AI22*AR33 + AI11*AI22*AR44 - AI11*AR24*AI42

           - AI11*AI24*AR42 + AI11*AR33*AI44 + AI11*AI33*AR44

           - AI11*AR34*AI43 - AI11*AI34*AR43 - AR22*AR33*AR44

           + AR22*AI33*AI44 + AR22*AR34*AR43 - AR22*AI34*AI43

           + AI22*AR33*AI44 + AI22*AI33*AR44 - AI22*AR34*AI43

           - AI22*AI34*AR43 + AR23*AR32*AR44 - AR23*AR34*AR42

           + AR23*AI34*AI42 - AR24*AR32*AR43 + AR24*AR33*AR42

           - AR24*AI33*AI42 + AI24*AR32*AI43 - AI24*AR33*AI42

           - AI24*AI33*AR42) + I*AR11*AR22*AR33*AI44

        + I*AR11*AR22*AI33*AR44 - I*AR11*AR22*AR34*AI43

        - I*AR11*AR22*AI34*AR43 + I*AR11*AI22*AR33*AR44

        - I*AR11*AI22*AI33*AI44 - I*AR11*AI22*AR34*AR43

        + I*AR11*AI22*AI34*AI43 - I*AR11*AR23*AR32*AI44

        + I*AR11*AR23*AR34*AI42 + I*AR11*AR23*AI34*AR42

        + I*AR11*AR24*AR32*AI43 - I*AR11*AR24*AR33*AI42

        - I*AR11*AR24*AI33*AR42 + I*AR11*AI24*AR32*AR43

        - I*AR11*AI24*AR33*AR42 + I*AR11*AI24*AI33*AI42

        + I*AI11*AR22*AR33*AR44 - I*AI11*AR22*AI33*AI44

        - I*AI11*AR22*AR34*AR43 + I*AI11*AR22*AI34*AI43

        - I*AI11*AI22*AR33*AI44 - I*AI11*AI22*AI33*AR44

        + I*AI11*AI22*AR34*AI43 + I*AI11*AI22*AI34*AR43

        - I*AI11*AR23*AR32*AR44 + I*AI11*AR23*AR34*AR42

        - I*AI11*AR23*AI34*AI42 + I*AI11*AR24*AR32*AR43

        - I*AI11*AR24*AR33*AR42 + I*AI11*AR24*AI33*AI42

        - I*AI11*AI24*AR32*AI43 + I*AI11*AI24*AR33*AI42

        + I*AI11*AI24*AI33*AR42 + AR11*AR22*AR33*AR44

        - AR11*AR22*AI33*AI44 - AR11*AR22*AR34*AR43

        + AR11*AR22*AI34*AI43 - AR11*AI22*AR33*AI44

        - AR11*AI22*AI33*AR44 + AR11*AI22*AR34*AI43

        + AR11*AI22*AI34*AR43 - AR11*AR23*AR32*AR44

        + AR11*AR23*AR34*AR42 - AR11*AR23*AI34*AI42

        + AR11*AR24*AR32*AR43 - AR11*AR24*AR33*AR42

        + AR11*AR24*AI33*AI42 - AR11*AI24*AR32*AI43

        + AR11*AI24*AR33*AI42 + AR11*AI24*AI33*AR42

        - AI11*AR22*AR33*AI44 - AI11*AR22*AI33*AR44

        + AI11*AR22*AR34*AI43 + AI11*AR22*AI34*AR43

        - AI11*AI22*AR33*AR44 + AI11*AI22*AI33*AI44

        + AI11*AI22*AR34*AR43 - AI11*AI22*AI34*AI43

        + AI11*AR23*AR32*AI44 - AI11*AR23*AR34*AI42

        - AI11*AR23*AI34*AR42 - AI11*AR24*AR32*AI43

        + AI11*AR24*AR33*AI42 + AI11*AR24*AI33*AR42

        - AI11*AI24*AR32*AR43 + AI11*AI24*AR33*AR42

        - AI11*AI24*AI33*AI42

denotid cp;


pol:=denotepol pol;


          4      3                        2
POL := LAM  + LAM *(I*CPI03 + CPR03) + LAM *(I*CPI02 + CPR02)

        + LAM*(I*CPI01 + CPR01) + I*CPI00 + CPR00

pol:=complexpol pol;


 If  CPR00 + CPR01 + CPR02 + CPR03 + 1  =  0  and  CPI00 + CPI01

 + CPI02 + CPI03  =  0  , a root of the polynomial is equal to 1.

          8        7            6                 2        2
POL := LAM  + 2*LAM *CPR03 + LAM *(2*CPR02 + CPR03  + CPI03 )

               5                                          4
        + 2*LAM *(CPR01 + CPR02*CPR03 + CPI02*CPI03) + LAM

                                                        2        2
       *(2*CPR00 + 2*CPR01*CPR03 + 2*CPI01*CPI03 + CPR02  + CPI02 ) +

             3
        2*LAM

       *(CPR00*CPR03 + CPI00*CPI03 + CPR01*CPR02 + CPI01*CPI02)

             2                                       2        2
        + LAM *(2*CPR00*CPR02 + 2*CPI00*CPI02 + CPR01  + CPI01 )

                                                   2        2
        + 2*LAM*(CPR00*CPR01 + CPI00*CPI01) + CPR00  + CPI00

denotid rp;


pol:=denotepol pol;


          8      7            6            5            4
POL := LAM  + LAM *RPR07 + LAM *RPR06 + LAM *RPR05 + LAM *RPR04

             3            2
        + LAM *RPR03 + LAM *RPR02 + LAM*RPR01 + RPR00

prdenot;


               2   2                       2   2
AR11 :=  - 2*S1 *K1  - 4*S1*S2*K1*K2 - 2*S2 *K2  + 1

AI11 :=  - (S1*C1*K1 + S1*C2*K1 + S2*C1*K2 + S2*C2*K2)

AR12 :=  - 4*S1*P*R1*(S1*K1 + S2*K2)

AI12 :=  - S1*P*R1*(C1 + C2)

AR13 := 2*P*R1*( - 2*S1*S2*K1 - K2)

AI13 := S2*P*R1*( - C1 - 4*C2*K2 - C2)

               2    2     2
AR14 :=  - 2*R1 *(S1  + S2 )

               2   2       2   2                       2   2
AR22 :=  - 2*S1 *K1  - 2*S1 *K3  - 4*S1*S2*K1*K2 - 2*S2 *K2  + 1

AI22 :=  - (S1*C1*K1 + S1*C2*K1 + S2*C1*K2 + S2*C2*K2)

                     2
AR23 :=  - 2*S1*S2*K3

          - 4*S1*R1*(S1*K1 + S2*K2)
AR24 := ----------------------------
                     P

          - S1*R1*(C1 + C2)
AI24 := --------------------
                 P

                     2
AR32 :=  - 2*S1*S2*K3

               2   2                       2   2       2   2
AR33 :=  - 2*S1 *K1  - 4*S1*S2*K1*K2 - 2*S2 *K2  - 2*S2 *K3  + 1

AI33 :=  - (S1*C1*K1 + S1*C2*K1 + S2*C1*K2 + S2*C2*K2)

                                 2
         2*R1*( - S1*S2*K1 - 2*S2 *K2 - C1*C2*K1)
AR34 := ------------------------------------------
                            P

         R1*( - 2*S1*C2*K1 - 2*S2*C1*K1 - S2*C1 - S2*C2)
AI34 := -------------------------------------------------
                                P

                     2
          - 4*S1*P*K3 *(S1*K1 + S2*K2)
AR42 := -------------------------------
                      R1

                   2
          - S1*P*K3 *(C1 + C2)
AI42 := -----------------------
                  R1

                     2
          - 4*S2*P*K3 *(S1*K1 + S2*K2)
AR43 := -------------------------------
                      R1

                   2
          - S2*P*K3 *(C1 + C2)
AI43 := -----------------------
                  R1

AR44 := 

       2   2       2   2                       2   2       2   2
 - 2*S1 *K1  - 2*S1 *K3  - 4*S1*S2*K1*K2 - 2*S2 *K2  - 2*S2 *K3  + 1

AI44 :=  - (S1*C1*K1 + S1*C2*K1 + S2*C1*K2 + S2*C2*K2)

CPR00 := AR11*AR22*AR33*AR44 - AR11*AR22*AI33*AI44

          - AR11*AR22*AR34*AR43 + AR11*AR22*AI34*AI43

          - AR11*AI22*AR33*AI44 - AR11*AI22*AI33*AR44

          + AR11*AI22*AR34*AI43 + AR11*AI22*AI34*AR43

          - AR11*AR23*AR32*AR44 + AR11*AR23*AR34*AR42

          - AR11*AR23*AI34*AI42 + AR11*AR24*AR32*AR43

          - AR11*AR24*AR33*AR42 + AR11*AR24*AI33*AI42

          - AR11*AI24*AR32*AI43 + AR11*AI24*AR33*AI42

          + AR11*AI24*AI33*AR42 - AI11*AR22*AR33*AI44

          - AI11*AR22*AI33*AR44 + AI11*AR22*AR34*AI43

          + AI11*AR22*AI34*AR43 - AI11*AI22*AR33*AR44

          + AI11*AI22*AI33*AI44 + AI11*AI22*AR34*AR43

          - AI11*AI22*AI34*AI43 + AI11*AR23*AR32*AI44

          - AI11*AR23*AR34*AI42 - AI11*AR23*AI34*AR42

          - AI11*AR24*AR32*AI43 + AI11*AR24*AR33*AI42

          + AI11*AR24*AI33*AR42 - AI11*AI24*AR32*AR43

          + AI11*AI24*AR33*AR42 - AI11*AI24*AI33*AI42

CPI00 := AR11*AR22*AR33*AI44 + AR11*AR22*AI33*AR44

          - AR11*AR22*AR34*AI43 - AR11*AR22*AI34*AR43

          + AR11*AI22*AR33*AR44 - AR11*AI22*AI33*AI44

          - AR11*AI22*AR34*AR43 + AR11*AI22*AI34*AI43

          - AR11*AR23*AR32*AI44 + AR11*AR23*AR34*AI42

          + AR11*AR23*AI34*AR42 + AR11*AR24*AR32*AI43

          - AR11*AR24*AR33*AI42 - AR11*AR24*AI33*AR42

          + AR11*AI24*AR32*AR43 - AR11*AI24*AR33*AR42

          + AR11*AI24*AI33*AI42 + AI11*AR22*AR33*AR44

          - AI11*AR22*AI33*AI44 - AI11*AR22*AR34*AR43

          + AI11*AR22*AI34*AI43 - AI11*AI22*AR33*AI44

          - AI11*AI22*AI33*AR44 + AI11*AI22*AR34*AI43

          + AI11*AI22*AI34*AR43 - AI11*AR23*AR32*AR44

          + AI11*AR23*AR34*AR42 - AI11*AR23*AI34*AI42

          + AI11*AR24*AR32*AR43 - AI11*AR24*AR33*AR42

          + AI11*AR24*AI33*AI42 - AI11*AI24*AR32*AI43

          + AI11*AI24*AR33*AI42 + AI11*AI24*AI33*AR42

CPR01 :=  - AR11*AR22*AR33 - AR11*AR22*AR44 + AR11*AI22*AI33

          + AR11*AI22*AI44 + AR11*AR23*AR32 + AR11*AR24*AR42

          - AR11*AI24*AI42 - AR11*AR33*AR44 + AR11*AI33*AI44

          + AR11*AR34*AR43 - AR11*AI34*AI43 + AI11*AR22*AI33

          + AI11*AR22*AI44 + AI11*AI22*AR33 + AI11*AI22*AR44

          - AI11*AR24*AI42 - AI11*AI24*AR42 + AI11*AR33*AI44

          + AI11*AI33*AR44 - AI11*AR34*AI43 - AI11*AI34*AR43

          - AR22*AR33*AR44 + AR22*AI33*AI44 + AR22*AR34*AR43

          - AR22*AI34*AI43 + AI22*AR33*AI44 + AI22*AI33*AR44

          - AI22*AR34*AI43 - AI22*AI34*AR43 + AR23*AR32*AR44

          - AR23*AR34*AR42 + AR23*AI34*AI42 - AR24*AR32*AR43

          + AR24*AR33*AR42 - AR24*AI33*AI42 + AI24*AR32*AI43

          - AI24*AR33*AI42 - AI24*AI33*AR42

CPI01 :=  - AR11*AR22*AI33 - AR11*AR22*AI44 - AR11*AI22*AR33

          - AR11*AI22*AR44 + AR11*AR24*AI42 + AR11*AI24*AR42

          - AR11*AR33*AI44 - AR11*AI33*AR44 + AR11*AR34*AI43

          + AR11*AI34*AR43 - AI11*AR22*AR33 - AI11*AR22*AR44

          + AI11*AI22*AI33 + AI11*AI22*AI44 + AI11*AR23*AR32

          + AI11*AR24*AR42 - AI11*AI24*AI42 - AI11*AR33*AR44

          + AI11*AI33*AI44 + AI11*AR34*AR43 - AI11*AI34*AI43

          - AR22*AR33*AI44 - AR22*AI33*AR44 + AR22*AR34*AI43

          + AR22*AI34*AR43 - AI22*AR33*AR44 + AI22*AI33*AI44

          + AI22*AR34*AR43 - AI22*AI34*AI43 + AR23*AR32*AI44

          - AR23*AR34*AI42 - AR23*AI34*AR42 - AR24*AR32*AI43

          + AR24*AR33*AI42 + AR24*AI33*AR42 - AI24*AR32*AR43

          + AI24*AR33*AR42 - AI24*AI33*AI42

CPR02 := AR11*AR22 + AR11*AR33 + AR11*AR44 - AI11*AI22 - AI11*AI33

          - AI11*AI44 + AR22*AR33 + AR22*AR44 - AI22*AI33 - AI22*AI44

          - AR23*AR32 - AR24*AR42 + AI24*AI42 + AR33*AR44 - AI33*AI44

          - AR34*AR43 + AI34*AI43

CPI02 := AR11*AI22 + AR11*AI33 + AR11*AI44 + AI11*AR22 + AI11*AR33

          + AI11*AR44 + AR22*AI33 + AR22*AI44 + AI22*AR33 + AI22*AR44

          - AR24*AI42 - AI24*AR42 + AR33*AI44 + AI33*AR44 - AR34*AI43

          - AI34*AR43

CPR03 :=  - (AR11 + AR22 + AR33 + AR44)

CPI03 :=  - (AI11 + AI22 + AI33 + AI44)

              2        2
RPR00 := CPR00  + CPI00

RPR01 := 2*(CPR00*CPR01 + CPI00*CPI01)

                                              2        2
RPR02 := 2*CPR00*CPR02 + 2*CPI00*CPI02 + CPR01  + CPI01

RPR03 := 2*(CPR00*CPR03 + CPI00*CPI03 + CPR01*CPR02 + CPI01*CPI02)

                                                        2        2
RPR04 := 2*CPR00 + 2*CPR01*CPR03 + 2*CPI01*CPI03 + CPR02  + CPI02

RPR05 := 2*(CPR01 + CPR02*CPR03 + CPI02*CPI03)

                        2        2
RPR06 := 2*CPR02 + CPR03  + CPI03

RPR07 := 2*CPR03

cleardenot;


clear aa,bb,pol;



%***********************************************************************
%*****                                                             *****
%*****      T e s t     Examples   ---   Module    H U R W P       *****
%*****                                                             *****
%***********************************************************************

% Example H.1

x0:=lam-1;


X0 := LAM - 1

x1:=lam-(ar+i*ai);


X1 := LAM - (I*AI + AR)

x2:=lam-(br+i*bi);


X2 := LAM - (I*BI + BR)

x3:=lam-(cr+i*ci);


X3 := LAM - (I*CI + CR)

hurwitzp x1;

Necessary and sufficient conditions are:
 - AR  >  0


COND


% Example H.2

x:=hurw(x0*x1);


X := 2*LAM*( - I*AI - AR + 1) + 2*(I*AI + AR + 1)

hurwitzp x;

Necessary and sufficient conditions are:
        2     2
4*( - AR  - AI  + 1)  >  0


COND


% Example H.3

x:=(x1*x2);


        2
X := LAM  - LAM*(I*AI + I*BI + AR + BR) + I*AR*BI + I*AI*BR + AR*BR

      - AI*BI

hurwitzp x;

Necessary and sufficient conditions are:
 - (AR + BR)  >  0

         2               2               2     2
AR*BR*(AR  + 2*AR*BR + AI  - 2*AI*BI + BR  + BI )  >  0


COND


% Example H.4

x:=(x1*x2*x3);


        3      2
X := LAM  - LAM *(I*AI + I*BI + I*CI + AR + BR + CR) + LAM*(I*AR*BI

         + I*AR*CI + I*AI*BR + I*AI*CR + I*BR*CI + I*BI*CR + AR*BR

         + AR*CR - AI*BI - AI*CI + BR*CR - BI*CI) - I*AR*BR*CI

      - I*AR*BI*CR - I*AI*BR*CR + I*AI*BI*CI - AR*BR*CR + AR*BI*CI

      + AI*BR*CI + AI*BI*CR

hurwitzp x;

Necessary and sufficient conditions are:
 - (AR + BR + CR)  >  0

  3        3          2   2       2             2   2        2
AR *BR + AR *CR + 2*AR *BR  + 4*AR *BR*CR + 2*AR *CR  + AR*AI *BR

        2                                           3          2
 + AR*AI *CR - 2*AR*AI*BR*BI - 2*AR*AI*CR*CI + AR*BR  + 4*AR*BR *CR

           2             2        3           2     3          2   2
 + AR*BR*BI  + 4*AR*BR*CR  + AR*CR  + AR*CR*CI  + BR *CR + 2*BR *CR

        2                           3           2
 + BR*BI *CR - 2*BR*BI*CR*CI + BR*CR  + BR*CR*CI   >  0

               4   2       4           4   2       4           4   2
AR*BR*CR*( - AR *BR  - 2*AR *BR*CR - AR *BI  + 2*AR *BI*CI - AR *CR

               4   2       3   3       3   2          3      2
           - AR *CI  - 2*AR *BR  - 6*AR *BR *CR - 2*AR *BR*BI

                 3                3      2       3      2
           + 4*AR *BR*BI*CI - 6*AR *BR*CR  - 2*AR *BR*CI

                 3   2          3                3   3       3      2
           - 2*AR *BI *CR + 4*AR *BI*CR*CI - 2*AR *CR  - 2*AR *CR*CI

                 2   2   2       2   2             2   2   2
           - 2*AR *AI *BR  - 4*AR *AI *BR*CR - 2*AR *AI *BI

                 2   2             2   2   2       2   2   2
           + 4*AR *AI *BI*CI - 2*AR *AI *CR  - 2*AR *AI *CI

                 2      2          2      2          2
           + 2*AR *AI*BR *BI + 2*AR *AI*BR *CI + 4*AR *AI*BR*BI*CR

                 2                   2      3       2      2
           + 4*AR *AI*BR*CR*CI + 2*AR *AI*BI  - 2*AR *AI*BI *CI

                 2         2       2         2       2      2
           + 2*AR *AI*BI*CR  - 2*AR *AI*BI*CI  + 2*AR *AI*CR *CI

                 2      3     2   4       2   3          2   2   2
           + 2*AR *AI*CI  - AR *BR  - 6*AR *BR *CR - 2*AR *BR *BI

                 2   2              2   2   2       2   2   2
           + 2*AR *BR *BI*CI - 10*AR *BR *CR  - 2*AR *BR *CI

                 2      2          2                   2      3
           - 6*AR *BR*BI *CR + 8*AR *BR*BI*CR*CI - 6*AR *BR*CR

                 2         2     2   4       2   3          2   2   2
           - 6*AR *BR*CR*CI  - AR *BI  + 2*AR *BI *CI - 2*AR *BI *CR

                 2   2   2       2      2          2      3     2   4
           - 2*AR *BI *CI  + 2*AR *BI*CR *CI + 2*AR *BI*CI  - AR *CR

                 2   2   2     2   4          2   3          2   2
           - 2*AR *CR *CI  - AR *CI  - 2*AR*AI *BR  - 6*AR*AI *BR *CR

                    2      2          2                   2      2
           - 2*AR*AI *BR*BI  + 4*AR*AI *BR*BI*CI - 6*AR*AI *BR*CR

                    2      2          2   2             2
           - 2*AR*AI *BR*CI  - 2*AR*AI *BI *CR + 4*AR*AI *BI*CR*CI

                    2   3          2      2             3
           - 2*AR*AI *CR  - 2*AR*AI *CR*CI  + 4*AR*AI*BR *CI

                       2                   2
           + 4*AR*AI*BR *BI*CR + 8*AR*AI*BR *CR*CI

                          2                      2
           + 4*AR*AI*BR*BI *CI + 8*AR*AI*BR*BI*CR

                             2                2                   3
           - 8*AR*AI*BR*BI*CI  + 4*AR*AI*BR*CR *CI + 4*AR*AI*BR*CI

                       3                2                      3
           + 4*AR*AI*BI *CR - 8*AR*AI*BI *CR*CI + 4*AR*AI*BI*CR

                             2          4             3   2
           + 4*AR*AI*BI*CR*CI  - 2*AR*BR *CR - 6*AR*BR *CR

                    3   2          2   2             2
           - 2*AR*BR *CI  - 4*AR*BR *BI *CR + 4*AR*BR *BI*CR*CI

                    2   3          2      2             2   2
           - 6*AR*BR *CR  - 6*AR*BR *CR*CI  - 6*AR*BR*BI *CR

                       2   2                2                   3
           - 2*AR*BR*BI *CI  + 4*AR*BR*BI*CR *CI + 4*AR*BR*BI*CI

                       4             2   2             4
           - 2*AR*BR*CR  - 4*AR*BR*CR *CI  - 2*AR*BR*CI

                    4             3                2   3
           - 2*AR*BI *CR + 4*AR*BI *CR*CI - 2*AR*BI *CR

                    2      2     4   2       4           4   2
           - 2*AR*BI *CR*CI  - AI *BR  - 2*AI *BR*CR - AI *BI

                 4           4   2     4   2       3   2
           + 2*AI *BI*CI - AI *CR  - AI *CI  + 2*AI *BR *BI

                 3   2          3                3
           + 2*AI *BR *CI + 4*AI *BR*BI*CR + 4*AI *BR*CR*CI

                 3   3       3   2          3      2       3      2
           + 2*AI *BI  - 2*AI *BI *CI + 2*AI *BI*CR  - 2*AI *BI*CI

                 3   2          3   3     2   4       2   3
           + 2*AI *CR *CI + 2*AI *CI  - AI *BR  - 2*AI *BR *CR

                 2   2   2       2   2             2   2   2
           - 2*AI *BR *BI  - 2*AI *BR *BI*CI - 2*AI *BR *CR

                 2   2   2       2      2          2
           - 2*AI *BR *CI  - 2*AI *BR*BI *CR - 8*AI *BR*BI*CR*CI

                 2      3       2         2     2   4       2   3
           - 2*AI *BR*CR  - 2*AI *BR*CR*CI  - AI *BI  - 2*AI *BI *CI

                 2   2   2       2   2   2       2      2
           - 2*AI *BI *CR  + 6*AI *BI *CI  - 2*AI *BI*CR *CI

                 2      3     2   4       2   2   2     2   4
           - 2*AI *BI*CI  - AI *CR  - 2*AI *CR *CI  - AI *CI

                    4             3                2   2
           + 2*AI*BR *CI + 4*AI*BR *CR*CI + 4*AI*BR *BI *CI

                    2      2          2      2          2   2
           + 2*AI*BR *BI*CR  - 2*AI*BR *BI*CI  + 2*AI*BR *CR *CI

                    2   3             2                      3
           + 2*AI*BR *CI  + 4*AI*BR*BI *CR*CI + 4*AI*BR*BI*CR

                             2          4             3   2
           + 4*AI*BR*BI*CR*CI  + 2*AI*BI *CI + 2*AI*BI *CR

                    3   2          2   2             2   3
           - 2*AI*BI *CI  - 2*AI*BI *CR *CI - 2*AI*BI *CI

                       4             2   2             4     4   2
           + 2*AI*BI*CR  + 4*AI*BI*CR *CI  + 2*AI*BI*CI  - BR *CR

               4   2       3   3       3      2       2   2   2
           - BR *CI  - 2*BR *CR  - 2*BR *CR*CI  - 2*BR *BI *CR

                 2   2   2       2      2          2      3     2   4
           - 2*BR *BI *CI  + 2*BR *BI*CR *CI + 2*BR *BI*CI  - BR *CR

                 2   2   2     2   4          2   3          2      2
           - 2*BR *CR *CI  - BR *CI  - 2*BR*BI *CR  - 2*BR*BI *CR*CI

               4   2     4   2       3   2          3   3     2   4
           - BI *CR  - BI *CI  + 2*BI *CR *CI + 2*BI *CI  - BI *CR

                 2   2   2     2   4
           - 2*BI *CR *CI  - BI *CI )  >  0


COND

clear x,x0,x1,x2,x3;



%***********************************************************************
%*****                                                             *****
%*****    T e s t     Examples   ---   Module    L I N B A N D     *****
%*****                                                             *****
%***********************************************************************

on evallhseqp;

  % So both sides of equations evaluate.

% Example L.1

operator v;


off echo;

      DIMENSION U(200),V(200),ACOF(200,3),ARHS(200),XL(200,3)
      DX=5.0E-2
      X=1.0E-1
      DO 25001 I=1,101
          V(I)=X**2/2.0
          X=X+DX
25001 CONTINUE
      IACOF=200
      IARHS=200
      N=1
      AD(N)=1.0
      AUCD(N)=0.0
      ARHS(N)=V(1)
      N=N+1
      ALCD(N)=1.0
      AD(N)=-2.0
      AUCD(N)=1.0
      ARHS(N)=V(3)-(2.0*V(2))+V(1)
      DO 25002 K=3,99,1
          N=N+1
          ALCD(N)=1.0
          AD(N)=-2.0
          AUCD(N)=1.0
          ARHS(N)=V(K-1)+V(K+1)-(2.0*V(K))
25002 CONTINUE
      N=N+1
      ALCD(N)=1.0
      AD(N)=-2.0
      AUCD(N)=1.0
      ARHS(N)=V(101)-(2.0*V(100))+V(99)
      N=N+1
      ALCD(N)=0.0
      AD(N)=1.0
      ARHS(N)=V(101)
      CALL DGTSL(N,ALCD,AD,AUCD,ARHS,IER)
C  N IS NUMBER OF EQUATIONS
C  ALCD,AD,AUCD,ARHS ARE ARRAYS OF DIMENSION AT LEAST (N)
C  IF (IER.NE.0) MATRIX ACOF IS ALGORITHMICALLY SINGULAR
      IF(IER.NE.0) CALL ERROUT
      N=1
      U(1)=ARHS(N)
      N=N+1
      U(2)=ARHS(N)
      DO 25003 K=3,99,1
          N=N+1
          U(K)=ARHS(N)
25003 CONTINUE
      N=N+1
      U(100)=ARHS(N)
      N=N+1
      U(101)=ARHS(N)
      AMER=0.0E-1
      ARER=0.0E-1
      DO 25004 I=1,101
          AM=ABS(REAL(U(I)-V(I)))
          AR=AM/V(I)
          IF(AM.GT.AMER) AMER=AM
          IF(AR.GT.ARER) ARER=AR
25004 CONTINUE
      WRITE(*,100)AMER,ARER
      STOP
100     FORMAT(' MAX. ABS. ERROR = ',E12.2,' MAX. REL. ERROR = ',E12.2)
      END


%***********************************************************************

% Example L.2

on nag;


off echo;

      DIMENSION U(200),V(200),ACOF(200,3),ARHS(200),XL(200,3)
      DX=5.0E-2
      X=1.0E-1
      DO 25005 I=1,101
          V(I)=X**2/2.0
          X=X+DX
25005 CONTINUE
      IACOF=200
      IARHS=200
      N=1
      AD(N)=1.0
      AUCD(N+1)=0.0
      ARHS(N)=V(1)
      N=N+1
      ALCD(N)=1.0
      AD(N)=-2.0
      AUCD(N+1)=1.0
      ARHS(N)=V(3)-(2.0*V(2))+V(1)
      DO 25006 K=3,99,1
          N=N+1
          ALCD(N)=1.0
          AD(N)=-2.0
          AUCD(N+1)=1.0
          ARHS(N)=V(K-1)+V(K+1)-(2.0*V(K))
25006 CONTINUE
      N=N+1
      ALCD(N)=1.0
      AD(N)=-2.0
      AUCD(N+1)=1.0
      ARHS(N)=V(101)-(2.0*V(100))+V(99)
      N=N+1
      ALCD(N)=0.0
      AD(N)=1.0
      ARHS(N)=V(101)
      IER=0
      CALL F01LEF(N,AD,0.,AUCD,ALCD,1.E-10,AU2CD,IN,IER)
C  N IS NUMBER OF EQUATIONS
C  ALCD,AD,AUCD,AU2CD,ARHS ARE ARRAYS OF DIMENSION AT LEAST (N)
C  IN IS INTEGER ARRAY OF DIMENSION AT LEAST (N)
      IF(IER.NE.0 .OR. IN(N).NE.0) CALL ERROUT
      CALL F04LEF(1,N,AD,AUCD,ALCD,AU2CD,IN,ARHS,0.,IER)
      IF(IER.NE.0) CALL ERROUT
      N=1
      U(1)=ARHS(N)
      N=N+1
      U(2)=ARHS(N)
      DO 25007 K=3,99,1
          N=N+1
          U(K)=ARHS(N)
25007 CONTINUE
      N=N+1
      U(100)=ARHS(N)
      N=N+1
      U(101)=ARHS(N)
      AMER=0.0E-1
      ARER=0.0E-1
      DO 25008 I=1,101
          AM=ABS(REAL(U(I)-V(I)))
          AR=AM/V(I)
          IF(AM.GT.AMER) AMER=AM
          IF(AR.GT.ARER) ARER=AR
25008 CONTINUE
      WRITE(*,100)AMER,ARER
      STOP
100     FORMAT(' MAX. ABS. ERROR = ',E12.2,' MAX. REL. ERROR = ',E12.2)
      END


%***********************************************************************

% Example L.3

on imsl;


off echo,nag;

      DIMENSION U(200),V(200),ACOF(200,3),ARHS(200),XL(200,3)
      DX=5.0E-2
      X=1.0E-1
      DO 25009 I=1,101
          V(I)=X**2/2.0
          X=X+DX
25009 CONTINUE
      IACOF=200
      IARHS=200
      N=1
      ACOF(N,1)=0.0
      ACOF(N,2)=1.0
      ACOF(N,3)=0.0
      ARHS(N)=V(1)
      N=N+1
      ACOF(N,1)=1.0
      ACOF(N,2)=-2.0
      ACOF(N,3)=1.0
      ARHS(N)=V(3)-(2.0*V(2))+V(1)
      DO 25010 K=3,99,1
          N=N+1
          ACOF(N,1)=1.0
          ACOF(N,2)=-2.0
          ACOF(N,3)=1.0
          ARHS(N)=V(K-1)+V(K+1)-(2.0*V(K))
25010 CONTINUE
      N=N+1
      ACOF(N,1)=1.0
      ACOF(N,2)=-2.0
      ACOF(N,3)=1.0
      ARHS(N)=V(101)-(2.0*V(100))+V(99)
      N=N+1
      ACOF(N,1)=0.0
      ACOF(N,2)=1.0
      ACOF(N,3)=0.0
      ARHS(N)=V(101)
      CALL LEQT1B(ACOF,N,1,1,IACOF,ARHS,1,IARHS,0,XL,IER)
C  IACOF IS ACTUAL 1-ST DIMENSION OF THE ACOF ARRAY
C  IARHS IS ACTUAL 1-ST DIMENSION OF THE ARHS ARRAY
C  XL IS WORKING ARRAY WITH SIZE N*(NLC+1)
C  WHERE N IS NUMBER OF EQUATIONS NLC NUMBER OF LOWER
C  CODIAGONALS
C  IF IER=129( .NE.0) MATRIX ACOF IS ALGORITHMICALLY SINGULAR
      IF(IER.NE.0) CALL ERROUT
      N=1
      U(1)=ARHS(N)
      N=N+1
      U(2)=ARHS(N)
      DO 25011 K=3,99,1
          N=N+1
          U(K)=ARHS(N)
25011 CONTINUE
      N=N+1
      U(100)=ARHS(N)
      N=N+1
      U(101)=ARHS(N)
      AMER=0.0E-1
      ARER=0.0E-1
      DO 25012 I=1,101
          AM=ABS(REAL(U(I)-V(I)))
          AR=AM/V(I)
          IF(AM.GT.AMER) AMER=AM
          IF(AR.GT.ARER) ARER=AR
25012 CONTINUE
      WRITE(*,100)AMER,ARER
      STOP
100     FORMAT(' MAX. ABS. ERROR = ',E12.2,' MAX. REL. ERROR = ',E12.2)
      END


%***********************************************************************

% Example L.4

on essl;


off echo,imsl;

      DIMENSION U(200),V(200),ACOF(200,3),ARHS(200),XL(200,3)
      DX=5.0E-2
      X=1.0E-1
      DO 25013 I=1,101
          V(I)=X**2/2.0
          X=X+DX
25013 CONTINUE
      IACOF=200
      IARHS=200
      N=1
      AD(N)=1.0
      AUCD(N)=0.0
      ARHS(N)=V(1)
      N=N+1
      ALCD(N)=1.0
      AD(N)=-2.0
      AUCD(N)=1.0
      ARHS(N)=V(3)-(2.0*V(2))+V(1)
      DO 25014 K=3,99,1
          N=N+1
          ALCD(N)=1.0
          AD(N)=-2.0
          AUCD(N)=1.0
          ARHS(N)=V(K-1)+V(K+1)-(2.0*V(K))
25014 CONTINUE
      N=N+1
      ALCD(N)=1.0
      AD(N)=-2.0
      AUCD(N)=1.0
      ARHS(N)=V(101)-(2.0*V(100))+V(99)
      N=N+1
      ALCD(N)=0.0
      AD(N)=1.0
      ARHS(N)=V(101)
      CALL DGTF(N,ALCD,AD,AUCD,AF,IPVT)
C  N IS NUMBER OF EQUATIONS
C  ALCD,AD,AUCD,AF,ARHS ARE ARRAYS OF DIMENSION AT LEAST (N)
C  THESE ARRAYS ARE DOUBLE PRECISION TYPE
C  FOR SINGLE PRECISION CHANGE DGTF TO SGTF AND DGTS TO SGTS
C  IPVT IS INTEGER ARRAY OF DIMENSION AT LEAST (N+3)/8
      CALL DGTS(N,ALCD,AD,AUCD,AF,IPVT,ARHS)
      N=1
      U(1)=ARHS(N)
      N=N+1
      U(2)=ARHS(N)
      DO 25015 K=3,99,1
          N=N+1
          U(K)=ARHS(N)
25015 CONTINUE
      N=N+1
      U(100)=ARHS(N)
      N=N+1
      U(101)=ARHS(N)
      AMER=0.0E-1
      ARER=0.0E-1
      DO 25016 I=1,101
          AM=ABS(REAL(U(I)-V(I)))
          AR=AM/V(I)
          IF(AM.GT.AMER) AMER=AM
          IF(AR.GT.ARER) ARER=AR
25016 CONTINUE
      WRITE(*,100)AMER,ARER
      STOP
100     FORMAT(' MAX. ABS. ERROR = ',E12.2,' MAX. REL. ERROR = ',E12.2)
      END

off essl;



%***********************************************************************
%*****                                                             *****
%*****      T e s t     Complex Examples   ---   More Modules      *****
%*****                                                             *****
%***********************************************************************

% Example M.1

off exp;


coordinates t,x into n,j;


grid uniform,x,t;


dependence v(t,x),w(t,x);


%isgrid u(x..half),v(x..half);
%grideq u(x..one),v(x..one);
iim aa, v, diff(v,t)=c*diff(w,x),
        w, diff(w,t)=c*diff(v,x);


*****************************
*****      Program      *****          IIMET Ver 1.1  17/05/91
*****************************

      Partial Differential Equations
      ==============================

DIFF(V,T) - DIFF(W,X)*C    =    0

 - DIFF(V,X)*C + DIFF(W,T)    =    0


0 interpolations are needed in T coordinate
  Equation for V variable is integrated in HALF grid point
  Equation for W variable is integrated in HALF grid point
0 interpolations are needed in X coordinate
  Equation for V variable is integrated in HALF grid point
  Equation for W variable is integrated in ONE grid point

         Equations after Discretization Using IIM :
         ==========================================

( - (W(N + 1,J + 1) - W(N + 1,J) + W(N,J + 1) - W(N,J))*C*HT

               2*J + 1               2*J + 1
  + 2*V(N + 1,---------)*HX - 2*V(N,---------)*HX)/(2*HX*HT)   =   0
                  2                     2


           2*J - 1              2*J + 1          2*J - 1
((V(N + 1,---------) - V(N + 1,---------) + V(N,---------)
              2                    2                2

          2*J + 1
   - V(N,---------))*C*HT + 2*W(N + 1,J)*HX - 2*W(N,J)*HX)/(2*HX*HT)
             2

   =   0



on exp;


center t=1/2;


functions v,w;


approx( aa(0,0)=aa(0,1));


 Difference scheme approximates differential equation 

DF(V,T) - DF(W,X)*C=0

 with orders of approximation:

  2
HT

HX

center x=1/2;


approx( aa(1,0)=aa(1,1));


 Difference scheme approximates differential equation 

 - DF(V,X)*C + DF(W,T)=0

 with orders of approximation:

  2
HT

HX

let cos ax**2=1-sin ax**2;


unfunc v,w;


matrix a(1,2),b(2,2),bt(2,2);


a(1,1):=aa(0,0);


                      2*J + 1               2*J + 1
A(1,1) := (2*V(N + 1,---------)*HX - 2*V(N,---------)*HX
                         2                     2

            - W(N + 1,J + 1)*C*HT + W(N + 1,J)*C*HT - W(N,J + 1)*C*HT

            + W(N,J)*C*HT)/(2*HX*HT)

a(1,2):=aa(1,0);


                    2*J - 1                   2*J + 1
A(1,2) := (V(N + 1,---------)*C*HT - V(N + 1,---------)*C*HT
                       2                         2

                   2*J - 1               2*J + 1
            + V(N,---------)*C*HT - V(N,---------)*C*HT
                      2                     2

            + 2*W(N + 1,J)*HX - 2*W(N,J)*HX)/(2*HX*HT)

off prfourmat;


b:=ampmat a;


       KX*HX
AX := -------
         2


     [           2  2   2     2                             ]
     [  - SIN(AX) *C *HT  + HX       2*SIN(AX)*C*I*HX*HT    ]
     [--------------------------   -----------------------  ]
     [         2  2   2     2              2  2   2     2   ]
     [  SIN(AX) *C *HT  + HX        SIN(AX) *C *HT  + HX    ]
B := [                                                      ]
     [                                       2  2   2     2 ]
     [   2*SIN(AX)*C*I*HX*HT        - SIN(AX) *C *HT  + HX  ]
     [ -----------------------    --------------------------]
     [         2  2   2     2              2  2   2     2   ]
     [  SIN(AX) *C *HT  + HX        SIN(AX) *C *HT  + HX    ]


clear a,aa;


factor lam;


pol:=charpol b;


           2         4  4   4            2  2   2   2     4
POL := (LAM *(SIN(AX) *C *HT  + 2*SIN(AX) *C *HX *HT  + HX )

                         4  4   4     4           4  4   4
         + 2*LAM*(SIN(AX) *C *HT  - HX ) + SIN(AX) *C *HT

                    2  2   2   2     4          4  4   4
         + 2*SIN(AX) *C *HX *HT  + HX )/(SIN(AX) *C *HT

                      2  2   2   2     4
           + 2*SIN(AX) *C *HX *HT  + HX )

pol:=troot1 pol;


                 2  2   2
        4*SIN(AX) *C *HT
 If  -----------------------  =  0  and  0
             2  2   2     2
      SIN(AX) *C *HT  + HX

  =  0  , a root of the polynomial is equal to 1.

           2         4  4   4            2  2   2   2     4
POL := (LAM *(SIN(AX) *C *HT  + 2*SIN(AX) *C *HX *HT  + HX )

                         4  4   4     4           4  4   4
         + 2*LAM*(SIN(AX) *C *HT  - HX ) + SIN(AX) *C *HT

                    2  2   2   2     4          4  4   4
         + 2*SIN(AX) *C *HX *HT  + HX )/(SIN(AX) *C *HT

                      2  2   2   2     4
           + 2*SIN(AX) *C *HX *HT  + HX )

pol:=hurw num pol;


            2        2  2   2         2  2   2     2
POL := 4*LAM *SIN(AX) *C *HT *(SIN(AX) *C *HT  + HX )

              2         2  2   2     2
        + 4*HX *(SIN(AX) *C *HT  + HX )

hurwitzp pol;

Necessary and sufficient conditions are:
         2
       HX
-----------------  >  0
        2  2   2
 SIN(AX) *C *HT


COND

bt:=tcon b;


      [           2  2   2     2                             ]
      [  - SIN(AX) *C *HT  + HX       - 2*SIN(AX)*C*I*HX*HT  ]
      [--------------------------   ------------------------ ]
      [         2  2   2     2              2  2   2     2   ]
      [  SIN(AX) *C *HT  + HX        SIN(AX) *C *HT  + HX    ]
BT := [                                                      ]
      [                                       2  2   2     2 ]
      [   - 2*SIN(AX)*C*I*HX*HT      - SIN(AX) *C *HT  + HX  ]
      [ ------------------------   --------------------------]
      [         2  2   2     2              2  2   2     2   ]
      [  SIN(AX) *C *HT  + HX        SIN(AX) *C *HT  + HX    ]


bt*b;


[1  0]
[    ]
[0  1]


bt*b-b*bt;


[0  0]
[    ]
[0  0]


clear aa,a,b,bt;



%***********************************************************************

% Example M.2 : Richtmyer, Morton: Difference methods for initial value
%               problems, &10.2.  p.261

coordinates t,x into n,j;


grid uniform,t,x;


let cos ax**2=1-sin ax**2;


unfunc v,w;


matrix a(1,2),b(2,2),bt(2,2);


a(1,1):=(v(n+1)-v(n))/ht-c*(w(j+1/2)-w(j-1/2))/hx$


a(1,2):=(w(n+1,j-1/2)-w(n,j-1/2))/ht-c*(v(n+1,j)-v(n+1,j-1))/hx$


off prfourmat;


b:=ampmat a;


       KX*HX
AX := -------
         2


     [                          2*SIN(AX)*C*I*HT      ]
     [        1                ------------------     ]
     [                                 HX             ]
     [                                                ]
B := [                                 2  2   2     2 ]
     [ 2*SIN(AX)*C*I*HT     - 4*SIN(AX) *C *HT  + HX  ]
     [------------------  ----------------------------]
     [        HX                        2             ]
     [                                HX              ]


clear a;


factor lam;


pol:=charpol b;


           2   2                   2  2   2     2      2
        LAM *HX  + 2*LAM*(2*SIN(AX) *C *HT  - HX ) + HX
POL := --------------------------------------------------
                                2
                              HX

pol:=hurw num pol;


            2        2  2   2                2  2   2     2
POL := 4*LAM *SIN(AX) *C *HT  + 4*( - SIN(AX) *C *HT  + HX )

hurwitzp pol;

Necessary and sufficient conditions are:
           2  2   2     2
  - SIN(AX) *C *HT  + HX
--------------------------  >  0
            2  2   2
     SIN(AX) *C *HT


COND

bt:=tcon b;


      [                            - 2*SIN(AX)*C*I*HT     ]
      [          1               ---------------------    ]
      [                                   HX              ]
      [                                                   ]
BT := [                                    2  2   2     2 ]
      [  - 2*SIN(AX)*C*I*HT     - 4*SIN(AX) *C *HT  + HX  ]
      [---------------------  ----------------------------]
      [         HX                          2             ]
      [                                   HX              ]


bt*b;


               2  2   2     2            3  3     3
      4*SIN(AX) *C *HT  + HX    8*SIN(AX) *C *I*HT
MAT((-------------------------,---------------------),
                  2                       3
                HX                      HX

                  3  3     3
       - 8*SIN(AX) *C *I*HT
    (------------------------,
                 3
               HX

                4  4   4            2  2   2   2     4
      16*SIN(AX) *C *HT  - 4*SIN(AX) *C *HX *HT  + HX
     --------------------------------------------------))
                              4
                            HX


bt*b-b*bt;


[                                      3  3     3 ]
[                            16*SIN(AX) *C *I*HT  ]
[            0              ----------------------]
[                                      3          ]
[                                    HX           ]
[                                                 ]
[              3  3     3                         ]
[  - 16*SIN(AX) *C *I*HT                          ]
[-------------------------            0           ]
[             3                                   ]
[           HX                                    ]


clear a,b,bt;



%***********************************************************************

% Example M.3: Mazurik: Algoritmy resenia zadaci..., preprint no.24-85,
%               AN USSR SO, Inst. teor. i prikl. mechaniky, p.34

operator v1,v2;


matrix a(1,3),b(3,3),bt(3,3);


a(1,1):=(p(n+1)-p(n))/ht+c/2*((-p(m-1)+2*p(m)-p(m+1))/hx +
         (v1(m+1)-v1(m-1))/hx - (p(k-1)-2*p(k)+p(k+1))/hy +
         (v2(k+1)-v2(k-1))/hy)$


a(1,2):=(v1(n+1)-v1(n))/ht+c/2*((p(m+1)-p(m-1))/hx -
         (v1(m-1)-2*v1(m)+v1(m+1))/hx)$


a(1,3):=(v2(n+1)-v2(n))/ht + c/2*((p(k+1)-p(k-1))/hy -
         (v2(k-1)-2*v2(k)+v2(k+1))/hy)$


coordinates t,x,y into n,m,k;


functions p,v1,v2;


for k:=1:3 do approx(a(1,k)=0);


 Difference scheme approximates differential equation 

DF(P,T) + DF(V1,X)*C + DF(V2,Y)*C=0

 with orders of approximation:

  2
HT

HX

HY

 Difference scheme approximates differential equation 

DF(P,X)*C + DF(V1,T)=0

 with orders of approximation:

  2
HT

HX

1

 Difference scheme approximates differential equation 

DF(P,Y)*C + DF(V2,T)=0

 with orders of approximation:

  2
HT

1

HY

grid uniform,t,x,y;


unfunc p,v1,v2;


hy:=hx;


HY := HX

off prfourmat;


b:=ampmat a;


AX := KX*HX


AY := KY*HY


           COS(AX)*C*HT + COS(AY)*C*HT - 2*C*HT + HX
B := MAT((-------------------------------------------,
                              HX

            - SIN(AX)*C*I*HT    - SIN(AY)*C*I*HT
          -------------------,-------------------),
                  HX                  HX

            - SIN(AX)*C*I*HT   COS(AX)*C*HT - C*HT + HX
         (-------------------,--------------------------,0),
                  HX                      HX

            - SIN(AY)*C*I*HT     COS(AY)*C*HT - C*HT + HX
         (-------------------,0,--------------------------))
                  HX                        HX


pol:=charpol b;


           3   3      2   2
POL := (LAM *HX  + LAM *HX

        *( - 2*COS(AX)*C*HT - 2*COS(AY)*C*HT + 4*C*HT - 3*HX) + LAM

                                2   2              2   2
        *HX*(3*COS(AX)*COS(AY)*C *HT  - 5*COS(AX)*C *HT

                                               2   2
              + 4*COS(AX)*C*HX*HT - 5*COS(AY)*C *HT

                                       2   2                   2
              + 4*COS(AY)*C*HX*HT + 7*C *HT  - 8*C*HX*HT + 3*HX )

                              3   3                      2      2
         + 4*COS(AX)*COS(AY)*C *HT  - 3*COS(AX)*COS(AY)*C *HX*HT

                      3   3              2      2
         - 4*COS(AX)*C *HT  + 5*COS(AX)*C *HX*HT

                         2                 3   3
         - 2*COS(AX)*C*HX *HT - 4*COS(AY)*C *HT

                      2      2                 2         3   3
         + 5*COS(AY)*C *HX*HT  - 2*COS(AY)*C*HX *HT + 4*C *HT

              2      2         2        3    3
         - 7*C *HX*HT  + 4*C*HX *HT - HX )/HX

let
  cos ax=cos ax2**2-sin ax2**2,
  cos ay=cos ay2**2-sin ay2**2,
  sin ax=2*sin ax2*cos ax2,
  sin ay=2*sin ay2*cos ay2,
  cos ax2**2=1-sin ax2**2,
  cos ay2**2=1-sin ay2**2,
  sin ax2=s1,
  sin ay2=s2,
  hx=c*ht/cap;


factor lam;


order s1,s2;


pol:=troot1 pol;


          2   2    3
 If  16*S1 *S2 *CAP   =  0  and  0

  =  0  , a root of the polynomial is equal to 1.

          3      2      2           2                      2   2    2
POL := LAM  + LAM *(4*S1 *CAP + 4*S2 *CAP - 3) + LAM*(12*S1 *S2 *CAP

                 2    2       2           2    2       2
           + 4*S1 *CAP  - 8*S1 *CAP + 4*S2 *CAP  - 8*S2 *CAP + 3)

               2   2    3        2   2    2       2    2       2
        + 16*S1 *S2 *CAP  - 12*S1 *S2 *CAP  - 4*S1 *CAP  + 4*S1 *CAP

              2    2       2
        - 4*S2 *CAP  + 4*S2 *CAP - 1

clear cos ax,cos ay,sin ax,sin ay,cos ax2**2,cos ay2**2,sin ax2,sin ay2,
      hx,hy;


pol:=hurw num pol;


             3   2   2    3
POL := 16*LAM *S1 *S2 *CAP

               2    2         2   2           2   2     2     2
        + 8*LAM *CAP *( - 6*S1 *S2 *CAP + 3*S1 *S2  + S1  + S2 ) + 16

                     2   2    2       2   2         2         2
       *LAM*CAP*(3*S1 *S2 *CAP  - 3*S1 *S2 *CAP - S1 *CAP + S1

                      2         2              2   2    3
                  - S2 *CAP + S2 ) + 8*( - 2*S1 *S2 *CAP

                 2   2    2     2    2       2         2    2
           + 3*S1 *S2 *CAP  + S1 *CAP  - 2*S1 *CAP + S2 *CAP

                 2
           - 2*S2 *CAP + 1)

hurwitzp pol;

If we denote:
           2   2    3
 (1)  16*S1 *S2 *CAP   >  0

           2         2   2           2   2     2     2
 (2)  8*CAP *( - 6*S1 *S2 *CAP + 3*S1 *S2  + S1  + S2 )  >  0

 (3)  16*CAP

      2   2    2       2   2         2         2     2         2
*(3*S1 *S2 *CAP  - 3*S1 *S2 *CAP - S1 *CAP + S1  - S2 *CAP + S2 )

  >  0

                2   2    3       2   2    2     2    2       2
 (4)  8*( - 2*S1 *S2 *CAP  + 3*S1 *S2 *CAP  + S1 *CAP  - 2*S1 *CAP

              2    2       2
          + S2 *CAP  - 2*S2 *CAP + 1)  >  0

           2         2   2           2   2     2     2
 (5)  8*CAP *( - 6*S1 *S2 *CAP + 3*S1 *S2  + S1  + S2 )  >  0

             3          4   4    3        4   4    2       4   4
 (6)  128*CAP *( - 16*S1 *S2 *CAP  + 24*S1 *S2 *CAP  - 9*S1 *S2 *CAP

                       4   2    2        4   2           4   2
                 + 8*S1 *S2 *CAP  - 10*S1 *S2 *CAP + 3*S1 *S2

                     4         4       2   4    2        2   4
                 - S1 *CAP + S1  + 8*S1 *S2 *CAP  - 10*S1 *S2 *CAP

                       2   4       2   2         2   2     4
                 + 3*S1 *S2  - 2*S1 *S2 *CAP + S1 *S2  - S2 *CAP

                     4
                 + S2 )  >  0

              3       6   6    6        6   6    5        6   6    4
 (7)  1024*CAP *(32*S1 *S2 *CAP  - 96*S1 *S2 *CAP  + 90*S1 *S2 *CAP

                         6   6    3        6   4    5
                  - 27*S1 *S2 *CAP  - 32*S1 *S2 *CAP

                          6   4    4        6   4    3
                  + 100*S1 *S2 *CAP  - 93*S1 *S2 *CAP

                         6   4    2        6   2    4
                  + 27*S1 *S2 *CAP  + 10*S1 *S2 *CAP

                         6   2    3        6   2    2       6   2
                  - 31*S1 *S2 *CAP  + 26*S1 *S2 *CAP  - 6*S1 *S2 *CAP

                      6    3       6    2       6
                  - S1 *CAP  + 3*S1 *CAP  - 2*S1 *CAP

                         4   6    5         4   6    4
                  - 32*S1 *S2 *CAP  + 100*S1 *S2 *CAP

                         4   6    3        4   6    2
                  - 93*S1 *S2 *CAP  + 27*S1 *S2 *CAP

                         4   4    4        4   4    3
                  + 20*S1 *S2 *CAP  - 76*S1 *S2 *CAP

                         4   4    2        4   4           4   2    3
                  + 73*S1 *S2 *CAP  - 21*S1 *S2 *CAP - 3*S1 *S2 *CAP

                         4   2    2        4   2           4   2
                  + 16*S1 *S2 *CAP  - 14*S1 *S2 *CAP + 3*S1 *S2

                      4         4        2   6    4        2   6    3
                  - S1 *CAP + S1  + 10*S1 *S2 *CAP  - 31*S1 *S2 *CAP

                         2   6    2       2   6           2   4    3
                  + 26*S1 *S2 *CAP  - 6*S1 *S2 *CAP - 3*S1 *S2 *CAP

                         2   4    2        2   4           2   4
                  + 16*S1 *S2 *CAP  - 14*S1 *S2 *CAP + 3*S1 *S2

                        2   2         2   2     6    3       6    2
                  - 2*S1 *S2 *CAP + S1 *S2  - S2 *CAP  + 3*S2 *CAP

                        6         4         4
                  - 2*S2 *CAP - S2 *CAP + S2 )  >  0

 (C1)   (1) AND (2) AND (4)

 (C2)   (1) AND (3) AND (4)

 (D1)   (5) AND (7)

 (D2)   (6)

Necessary and sufficient conditions are:
  (  (C1)  OR  (C2)  )  AND  (  (D1)  OR  (D2)  )

COND

bt:=tcon b;


            COS(AX)*C*HT + COS(AY)*C*HT - 2*C*HT + HX
BT := MAT((-------------------------------------------,
                               HX

            SIN(AX)*C*I*HT   SIN(AY)*C*I*HT
           ----------------,----------------),
                  HX               HX

            SIN(AX)*C*I*HT   COS(AX)*C*HT - C*HT + HX
          (----------------,--------------------------,0),
                  HX                    HX

            SIN(AY)*C*I*HT     COS(AY)*C*HT - C*HT + HX
          (----------------,0,--------------------------))
                  HX                      HX


bt*b;


                         2   2              2   2
MAT(((2*COS(AX)*COS(AY)*C *HT  - 4*COS(AX)*C *HT  + 2*COS(AX)*C*HX*HT

                    2   2                          2   2
       - 4*COS(AY)*C *HT  + 2*COS(AY)*C*HX*HT + 6*C *HT  - 4*C*HX*HT

                            2     2
           2    2  SIN(AX)*C *I*HT *( - COS(AY) + 1)
       + HX )/HX ,-----------------------------------,
                                    2
                                  HX

               2     2
      SIN(AY)*C *I*HT *( - COS(AX) + 1)
     -----------------------------------),
                       2
                     HX

               2     2
      SIN(AX)*C *I*HT *(COS(AY) - 1)                 2   2
    (--------------------------------,( - 2*COS(AX)*C *HT
                     2
                   HX

                                  2   2                 2    2
         + 2*COS(AX)*C*HX*HT + 2*C *HT  - 2*C*HX*HT + HX )/HX ,

                       2   2
      SIN(AX)*SIN(AY)*C *HT
     ------------------------),
                 2
               HX

               2     2                                  2   2
      SIN(AY)*C *I*HT *(COS(AX) - 1)   SIN(AX)*SIN(AY)*C *HT
    (--------------------------------,------------------------,(
                     2                            2
                   HX                           HX

                      2   2                          2   2
         - 2*COS(AY)*C *HT  + 2*COS(AY)*C*HX*HT + 2*C *HT

                         2    2
         - 2*C*HX*HT + HX )/HX ))


bt*b-b*bt;


                   2     2
        2*SIN(AX)*C *I*HT *( - COS(AY) + 1)
MAT((0,-------------------------------------,
                          2
                        HX

                 2     2
      2*SIN(AY)*C *I*HT *( - COS(AX) + 1)
     -------------------------------------),
                        2
                      HX

                 2     2
      2*SIN(AX)*C *I*HT *(COS(AY) - 1)
    (----------------------------------,0,0),
                      2
                    HX

                 2     2
      2*SIN(AY)*C *I*HT *(COS(AX) - 1)
    (----------------------------------,0,0))
                      2
                    HX


clear a,b,bt,pol;



%***********************************************************************

end;


Time: 35649 ms  plus GC time: 2346 ms

Quitting


REDUCE Historical
REDUCE Sourceforge Project | Historical SVN Repository | GitHub Mirror | SourceHut Mirror | NotABug Mirror | Chisel Mirror | Chisel RSS ]