File r38/packages/defint/defintd.red artifact caebc6444a part of check-in c70d02b470


module defintd;

fluid '(mellincoef mellin!-coefficients!* mellin!-transforms!*);

% The following are needed by GAMMA.

load_package specfn,sfgamma;

symbolic procedure simpintgggg (u);
   
begin scalar ff1,ff2,alpha,var,chosen_num,coef,temp,const,result;

     u := defint_reform(u);
     const := car u;
     if const = 0 then result := nil . 1
     else
     << u := cdr u;
      	if length u neq 4 then rederr  "Integration failed";
        if (car u) = 0 then ff1 := '(0 0 x) 
	else ff1 := prepsq simp car u;
        if (cadr u) = 0 then ff2 := '(0 0 x) 
	else  ff2 := prepsq simp cadr u;

	if (ff1 = 'UNKNOWN) then return simp 'unknown;
	if (ff2 = 'UNKNOWN) then return simp 'unknown;
	alpha := caddr u;
	var := cadddr u;

        if car ff1 = 'f31 or car ff1 = 'f32 then 
        	<< put('f1,'g,spec_log(ff1)); MELLINCOEF :=1>>
	else
	<< chosen_num := cadr ff1;
	   put('f1,'g,getv(mellin!-transforms!*,chosen_num));
	   coef := getv(mellin!-coefficients!*,chosen_num);
	   if coef then MELLINCOEF:= coef else MELLINCOEF :=1>>;

        if car ff2 = 'f31 or car ff2 = 'f32 then 
           put('f2,'g,spec_log(ff2))
	else
	<< chosen_num := cadr ff2;
	   put('f2,'g,getv(mellin!-transforms!*,chosen_num));
	   coef := getv(mellin!-coefficients!*,chosen_num);
	   if coef then MELLINCOEF:= coef * MELLINCOEF >>;

	temp :=  simp list('intgg,'f1 . cddr ff1, 
	      	       	     	      'f2 . cddr ff2,alpha,var);

	temp := prepsq temp;

	if temp neq 'unknown then
	    result := reval algebraic(const*temp)

	else result := temp;
 	result := simp!* result; >>;
      return result;
end;

symbolic procedure spec_log(ls);
 
begin scalar n,num,denom,mellin;

  n := cadr ls;
  num := for i:= 0 :n collect 1;
  denom := for i:= 0 :n collect 0; 

  if car ls = 'f31 then
    mellin := {{}, {n+1,0,n+1,n+1},num,denom, (-1)^n*factorial(n),'x}
   else mellin := {{}, {0,n+1,n+1,n+1},num,denom, factorial(n),'x};
return mellin;
end;

 % some rules which let the results look more convenient ...

algebraic <<

 for all z let sinh(z) = (exp (z) - exp(-z))/2;
 for all z let cosh(z) = (exp (z) + exp(-z))/2;

operator laplace2,Y_transform2,K_transform2,struveh_transform2,
      	 fourier_sin2,fourier_cos2;

gamma_rules := 

{ gamma(~n/2+1/2) => gamma(n)/(2^(n-1)*gamma(n/2))*gamma(1/2),
  gamma(~n/2+1) => n/2*gamma(1/2*n),
  gamma(3/4)*gamma(1/4) => pi*sqrt(2),
  gamma(~n)*~n/gamma(~n+1) => 1
};

let gamma_rules;

factorial_rules := {factorial(~a) => gamma(a+1) };
let factorial_rules;

>>;

% A function to calculate laplace transforms of given functions via
% integration of Meijer G-functions.

put('laplace_transform,'psopfn,'new_laplace);

symbolic procedure new_laplace(lst);

begin scalar new_lst;
lst := product_test(lst);
new_lst := {'laplace2,lst};
return defint_trans(new_lst);
end;

% A function to calculate hankel transforms of given functions via
% integration of Meijer G-functions.

put('hankel_transform,'psopfn,'new_hankel);

symbolic procedure new_hankel(lst);

begin scalar new_lst;
lst := product_test(lst);
new_lst := {'hankel2,lst};
return defint_trans(new_lst);
end;

% A function to calculate Y transforms of given functions via
% integration of Meijer G-functions.

put('Y_transform,'psopfn,'new_Y_transform);

symbolic procedure new_Y_transform(lst);

begin scalar new_lst;
lst := product_test(lst);
new_lst := {'Y_transform2,lst};
return defint_trans(new_lst);
end;

% A function to calculate K-transforms of given functions via
% integration of Meijer G-functions.

put('K_transform,'psopfn,'new_K_transform);

symbolic procedure new_K_transform(lst);

begin scalar new_lst;
lst := product_test(lst);
new_lst := {'K_transform2,lst};
return defint_trans(new_lst);
end;


% A function to calculate struveh transforms of given functions via
% integration of Meijer G-functions.

put('struveh_transform,'psopfn,'new_struveh);

symbolic procedure new_struveh(lst);

begin scalar new_lst,temp;
	lst := product_test(lst);
	new_lst := {'struveh2,lst};
	temp:=defint_trans(new_lst);
	return defint_trans(new_lst);
end;

% A function to calculate fourier sin transforms of given functions via
% integration of Meijer G-functions.

put('fourier_sin,'psopfn,'new_fourier_sin);

symbolic procedure new_fourier_sin(lst);

begin scalar new_lst;
lst := product_test(lst);
new_lst := {'fourier_sin2,lst};
return defint_trans(new_lst);
end;

% A function to calculate fourier cos transforms of given functions via
% integration of Meijer G-functions.

put('fourier_cos,'psopfn,'new_fourier_cos);

symbolic procedure new_fourier_cos(lst);

  begin scalar new_lst;
	lst := product_test(lst);
	new_lst := {'fourier_cos2,lst};
	return defint_trans(new_lst);
  end;

% A function to test whether the input is in a product form and if so
% to rearrange it into a list form.

% e.g. defint(x*cos(x)*sin(x),x) => defint(x,cos(x),sin(x),x);
 
symbolic procedure product_test(lst);

begin scalar temp;
product_tst := nil;
if listp car lst then 
<< temp := caar lst;
   if temp = 'times and length cdar lst <= 3 then
   << lst := append(cdar lst,cdr lst); product_tst := t>>;
>>;
return lst;
end;

% A function to call the relevant transform's rule-set    

symbolic procedure defint_trans(lst);

begin scalar type,temp_lst,new_lst,var,n1,n2,result;

% Set a test to indicate that the relevant conditions for validity
% should not be tested

	algebraic(transform_tst := t);

	spec_cond := '();
	type := car lst; % obtain the transform type
	temp_lst := cadr lst;
	var := nth(temp_lst,length temp_lst);
	new_lst := hyperbolic_test(temp_lst);

	if length temp_lst = 3 then
		<< n1 := car new_lst;
   		   n2 := cadr new_lst;
   		   result := reval list(type,n1,n2,var)>>
	 % Call the relevant rule-set

else if length temp_lst = 2 then
<< n1 := car new_lst;
   result := reval list(type,n1,var)>> % Call the relevant rule-set

	else if length temp_lst = 4 and product_tst = 't then
	<< n1 := {'times,car new_lst,cadr new_lst};
	   n2 := caddr new_lst;
	   result := reval list(type,n1,n2,var)>>

	else << algebraic(transform_tst := nil);
	        rederr "Wrong number of arguments">>;

return result;
end;

% A function to test for hyperbolic functions and rename them 
% in order to avoid their transformation into combinations of 
% the exponenetial function

%symbolic procedure hyperbolic_test(lst);
% begin scalar temp,new_lst,lth;
% lth := length lst;
% for i:=1 :lth do
% << temp := car lst;
%    if listp temp and (car temp = 'difference or car temp = 'plus) then
%        temp := hyperbolic_test(temp)
%    else if listp temp and car temp = 'sinh then car temp := 'mysinh
%    else if listp temp and car temp = 'cosh then car temp := 'mycosh;
%    new_lst := append(new_lst,{temp});
%   lst := cdr lst>>;
%return new_lst;
%end;

symbolic procedure hyperbolic_test lst;
   for each u in lst collect
      if atom u then u
       else if car u memq '(difference plus) then hyperbolic_test u
       else if car u eq 'sinh then 'mysinh . cdr u
       else if car u eq 'cosh then 'mycosh . cdr u
       else u;

endmodule;

end;





REDUCE Historical
REDUCE Sourceforge Project | Historical SVN Repository | GitHub Mirror | SourceHut Mirror | NotABug Mirror | Chisel Mirror | Chisel RSS ]