module jhdriver;
% Author: James H. Davenport.
fluid '(!*algint
!*backtrace
!*coates
!*noacn
!*tra
!*trmin
!*structure
basic!-listofallsqrts
basic!-listofnewsqrts
gaussiani
intvar
listofallsqrts
listofnewsqrts
previousbasis
sqrt!-intvar
sqrtflag
sqrts!-in!-integrand
sqrts!-mod!-prime
taylorasslist
varlist
zlist);
global '(tryharder);
switch algint,coates,noacn,tra,trmin;
exports algebraiccase,doalggeom,coates!-multiple;
!*algint := t; % Assume algebraic integration wanted if this module
% is loaded.
symbolic procedure operateon(reslist,x);
begin
scalar u,v,answer,save;
scalar sqrts!-mod!-prime;
u:=zmodule(reslist);
v:=answer:=nil ./ 1;
while u and not atom v do <<
v:=findfunction cdar u;
if not atom v then <<
if !*tra or !*trmin then <<
printc "Extension logarithm is ";
printsq v >>;
save:=tryharder;
tryharder:=x;
v:= combine!-logs(caar u, simplogsq v);
tryharder:=save;
answer:=!*addsq(answer,v);
u:=cdr u >> >>;
if atom v
then return v
else return answer
end;
symbolic procedure findfunction divisor;
begin
scalar v,places,mults,ans,dof1k;
scalar previousbasis;
% ***time-hack-2 :::
% A hack for decreasing the amount of work done in COATES.
divisor:=for each u in divisor collect
correct!-mults u;
if !*coates
then go to nohack;
v:=precoates(divisor,intvar,nil);
if not atom v
then return v;
nohack:
for each u in divisor do <<
places:=(car u).places;
mults :=(cdr u).mults >>;
v:=coates(places,mults,intvar);
if not atom v
then return v;
dof1k:=differentials!-1 getsqrtsfromplaces places;
if null dof1k
then interr "Must be able to integrate over curves of genus 0";
if not mazurp(places,dof1k)
then go to general;
ans:='provably!-impossible;
for i:=2:12 do
if (i neq 11) and
not atom (ans:=coates!-multiple(places,mults,i))
then i:=12; % leave the loop - we have an answer.
return ans;
general:
v:=findmaninparm places;
if null v
then return algebraic!-divisor(divisor,dof1k);
if not maninp(divisor,v,dof1k)
then return 'provably!-impossible;
v:=1;
loop:
v:=iadd1 v;
if not atom (ans:=coates!-multiple(places,mults,v))
then return ans;
go to loop
end;
symbolic procedure correct!-mults u;
begin
scalar multip;
multip:=cdr u;
for each v in car u do
if (lsubs v eq intvar) and
eqcar(rsubs v,'expt)
then multip:=multip * (caddr rsubs v);
return (car u).multip
end;
symbolic procedure algebraiccase(expression,zlist,varlist);
begin
scalar rischpart,deriv,w,firstterm;
scalar sqrtflag,!*structure; % set !*structure to NIL, else
% sqrt(z)^2 isn't simplified
sqrtflag:=t;
sqrtsave(listofallsqrts,listofnewsqrts,list(intvar . intvar));
rischpart:= errorset!*(list('doalggeom,mkquote expression),
!*backtrace);
newplace list (intvar.intvar);
if atom rischpart
then <<
if !*tra then printc "Inner integration failed";
deriv:=nil ./ 1;
% assume no answer.
rischpart:=deriv >>
else
if atom car rischpart
then <<
if !*tra or !*trmin then
printc "The 'logarithmic part' is not elementary";
return (nil ./ 1) . expression >>
else <<
rischpart:=car rischpart;
deriv:=!*diffsq(rischpart,intvar) where sqrtflag=nil;
% deriv := squashsqrt deriv;
% Should no longer be necessary.
if !*tra or !*trmin then <<
printc "Inner working yields";
printsq rischpart;
printc "with derivative";
printsq deriv >> >>;
deriv:=!*addsq(expression,negsq deriv);
if null numr deriv
then return rischpart . (nil ./ 1); % no algebraic part.
if null involvesq(deriv,intvar)
then return !*addsq(rischpart,
!*multsq(deriv,((mksp(intvar,1) .* 1) .+ nil) ./ 1))
. (nil ./ 1);
% if the difference is merely a constant.
varlist:=getvariables deriv;
zlist:=findzvars(varlist,list intvar,intvar,nil);
varlist:=setdiff(varlist,zlist);
firstterm:=simp!* car zlist; % this may crop up.
w:=sqrt2top !*multsq(deriv,invsq !*diffsq(firstterm,intvar));
if null involvesq(w,intvar)
then return !*addsq(rischpart,!*multsq(w,firstterm)) . (nil ./ 1);
if !*noacn then interr "Testing only logarithmic code";
deriv:=transcendentalcase(deriv,intvar,nil,zlist,varlist);
return !*addsq(car deriv, rischpart) . cdr deriv
end;
symbolic procedure doalggeom(differential);
begin
scalar reslist,place,placelist,
savetaylorasslist,sqrts!-in!-integrand,
taylorasslist;
placelist:=findpoles(differential,intvar);
reslist:=nil;
sqrts!-in!-integrand:=sqrtsinsq (differential,intvar);
while placelist do <<
place:=car placelist;
placelist:=cdr placelist;
savetaylorasslist:=taylorasslist;
place:=find!-residue(differential,intvar,place);
if place
then reslist:=append(place,reslist)
else taylorasslist:=savetaylorasslist >>;
if reslist
then go to serious;
if !*tra or !*trmin
then printc "No residues => no logs";
return nil ./ 1;
serious:
placelist:=operateon(reslist,intvar);
if placelist eq 'failed
then interr "Divisor operations failed";
return placelist
end;
symbolic procedure algebraic!-divisor(divisor,dof1k);
if length dof1k = 1
then lutz!-nagell(divisor)
else bound!-torsion(divisor,dof1k);
symbolic procedure coates!-multiple(places,mults,v);
begin
scalar ans;
if not atom (ans:=coates(places,
for each u in mults collect v*u,
intvar))
then <<
if !*tra or !*trmin then <<
princ "Divisor has order ";
printc v >>;
return !*kk2q list('nthroot,mk!*sq ans,v) >>
else return ans
end;
symbolic procedure mazurp(places,dof1k);
% Checks to ensure we have an elliptic curve over the rationals.
begin
% scalar sqrt2,sqrt4,v;
% sqrt2:=0;
% % Number of SQRTs of things of degree 1 or 2;
% sqrt4:=0;
% % " " " 3 or 4;
% for each u in getsqrtsfromplaces places do <<
% v:=!*q2f simp u;
% if sqrtsinsq(v,intvar)
% then return nil;
% % Cannot use nested SQRTs;
% v:=car stt(v,intvar);
% if v < 3
% then if sqrt4>0
% then return nil
% else if sqrt2>1
% then return nil
% else sqrt2:=iadd1 sqrt2
% else if v < 5
% then if sqrt2>0 or sqrt4>0
% then return nil
% else sqrt4:=1
% else return nil >>;
scalar answer;
if length dof1k neq 1
then return nil;
% Genus = # linearly independent differentials of 1st kind;
% We know know that it is of genus = 1.
answer:=t;
while answer and places do
if sqrtsintree(basicplace car places,nil,nil)
then answer:= nil
else places:=cdr places;
if null answer then return nil;
if !*tra then
<<prin2 "*** We can apply Mazur's bound on the torsion of";
prin2t "elliptic curves over the rationals">>;
return t
end;
endmodule;
end;