COMMENT SOME EXAMPLES OF THE F O R STATEMENT;
COMMENT SUMMING THE SQUARES OF THE EVEN POSITIVE INTEGERS
THROUGH 50;
FOR I:=2 STEP 2 UNTIL 50 SUM I**2;
COMMENT TO SET XXX TO THE FACTORIAL OF 10;
XXX := FOR I:=1:10 PRODUCT I;
COMMENT ALTERNATIVELY, WE COULD SET THE ELEMENTS A(I) OF THE
ARRAY A TO THE FACTORIAL OF I BY THE STATEMENTS;
ARRAY A(10);
A(0):=1$
FOR I:=1:10 DO A(I):=I*A(I-1);
COMMENT THE ABOVE VERSION OF THE F O R STATEMENT DOES NOT RETURN AN
ALGEBRAIC VALUE, BUT WE CAN NOW USE THESE ARRAY ELEMENTS
AS FACTORIALS IN EXPRESSIONS, E. G.;
1+A(5);
COMMENT WE COULD HAVE PRINTED THE VALUES OF EACH A(I)
AS THEY WERE COMPUTED BY REPLACING THE F O R STATEMENT BY;
FOR I:=1:10 DO WRITE A(I):= I*A(I-1);
COMMENT ANOTHER WAY TO USE FACTORIALS WOULD BE TO INTRODUCE AN
OPERATOR FAC BY AN INTEGER PROCEDURE AS FOLLOWS;
INTEGER PROCEDURE FAC (N);
BEGIN INTEGER M,N;
M:=1;
L1: IF N=0 THEN RETURN M;
M:=M*N;
N:=N-1;
GO TO L1
END;
COMMENT WE CAN NOW USE FAC AS AN OPERATOR IN EXPRESSIONS,
E. G. ;
Z**2+FAC(4)-2*FAC 2*Y;
COMMENT NOTE IN THE ABOVE EXAMPLE THAT THE PARENTHESES AROUND
THE ARGUMENTS OF FAC MAY BE OMITTED SINCE FAC IS A UNARY OPERATOR;
COMMENT THE FOLLOWING EXAMPLES ILLUSTRATE THE SOLUTION OF SOME
COMPLETE PROBLEMS;
COMMENT THE F AND G SERIES (REF SCONZO, P., LESCHACK, A. R. AND
TOBEY, R. G., ASTRONOMICAL JOURNAL, VOL 70 (MAY 1965);
SCALAR F1,F2,G1,G2;
DEPS:= -SIG*(MU+2*EPS)$
DMU:= -3*MU*SIG$
DSIG:= EPS-2*SIG**2$
F1:= 1$
G1:= 0$
FOR I:= 1:8 DO
BEGIN
F2:= -MU*G1 + DEPS*DF(F1,EPS) + DMU*DF(F1,MU) + DSIG*DF(F1,SIG)$
WRITE "F(",I,") := ",F2;
G2:= F1 + DEPS*DF(G1,EPS) + DMU*DF(G1,MU) + DSIG*DF(G1,SIG)$
WRITE "G(",I,") := ",G2;
F1:=F2$
G1:=G2
END;
COMMENT A PROBLEM IN FOURIER ANALYSIS;
FOR ALL X,Y LET COS(X)*COS(Y)= (COS(X+Y)+COS(X-Y))/2,
COS(X)*SIN(Y)= (SIN(X+Y)-SIN(X-Y))/2,
SIN(X)*SIN(Y)= (COS(X-Y)-COS(X+Y))/2;
FACTOR COS,SIN;
ON LIST;
(A1*COS(WT)+ A3*COS(3*WT)+ B1*SIN(WT)+ B3*SIN(3*WT))**3;
COMMENT END OF FOURIER ANALYSIS EXAMPLE ;
OFF LIST;
FOR ALL X,Y CLEAR COS X*COS Y,COS X*SIN Y,SIN X*SIN Y;
COMMENT LEAVING SUCH REPLACEMENTS ACTIVE WOULD SLOW DOWN
SUBSEQUENT COMPUTATION;
COMMENT AN EXAMPLE USING THE MATRIX FACILITY;
MATRIX XX,YY;
LET XX= MAT((A11,A12),(A21,A22)),
YY= MAT((Y1),(Y2));
2*DET XX - 3*XXX;
ZZ:= SOLVE (XX,YY);
1/XX**2;
COMMENT END OF MATRIX EXAMPLES;
COMMENT THE FOLLOWING EXAMPLES WILL FAIL UNLESS THE FUNCTIONS
NEEDED FOR PROBLEMS IN HIGH ENERGY PHYSICS HAVE BEEN LOADED;
COMMENT A PHYSICS EXAMPLE;
ON DIV; COMMENT THIS GIVES US OUTPUT IN SAME FORM AS BJORKEN AND DRELL;
MASS KI= 0, KF= 0, PI= M, PF= M; VECTOR EI,EF;
MSHELL KI,KF,PI,PF;
LET PI.EI= 0, PI.EF= 0, PI.PF= M**2+KI.KF, PI.KI= M*K,PI.KF=
M*KP, PF.EI= -KF.EI, PF.EF= KI.EF, PF.KI= M*KP, PF.KF=
M*K, KI.EI= 0, KI.KF= M*(K-KP), KF.EF= 0, EI.EI= -1, EF.EF=
-1;
FOR ALL P LET GP(P)= G(L,P)+M;
COMMENT THIS IS JUST TO SAVE US A LOT OF WRITING;
GP(PF)*(G(L,EF,EI,KI)/(2*KI.PI) + G(L,EI,EF,KF)/(2*KF.PI))
* GP(PI)*(G(L,KI,EI,EF)/(2*KI.PI) + G(L,KF,EF,EI)/(2*KF.PI)) $
WRITE "THE COMPTON CROSS-SECTION IS ",!*ANS;
COMMENT END OF FIRST PHYSICS EXAMPLE;
OFF DIV;
COMMENT ANOTHER PHYSICS EXAMPLE;
FACTOR MM,P1.P3;
INDEX X1,Y1,Z;
MASS P1=MM,P2=MM,P3= MM,P4= MM,K1=0;
MSHELL P1,P2,P3,P4,K1;
VECTOR Q1,Q2;
FOR ALL P LET GA(P)=G(LA,P)+MM, GB(P)= G(LB,P)+MM;
GA(-P2)*G(LA,X1)*GA(-P4)*G(LA,Y1)* (GB(P3)*G(LB,X1)*GB(Q1)
*G(LB,Z)*GB(P1)*G(LB,Y1)*GB(Q2)*G(LB,Z) + GB(P3)
*G(LB,Z)*GB(Q2)*G(LB,X1)*GB(P1)*G(LB,Z)*GB(Q1)*G(LB,Y1))$
LET Q1=P1-K1, Q2=P3+K1;
COMMENT IT IS USUALLY FASTER TO MAKE SUCH SUBSTITUTIONS AFTER ALL
TRACE ALGEBRA IS DONE;
WRITE "CXN = ",!*ANS;
COMMENT END OF SECOND PHYSICS EXAMPLE;
COMMENT THE FOLLOWING RATHER LONG PROGRAM IS A COMPLETE ROUTINE FOR
CALCULATING THE RICCI SCALAR. IT WAS DEVELOPED IN COLLABORATION WITH
DAVID BARTON AND JOHN FITCH;
COMMENT FIRST WE INHIBIT DIAGNOSTIC MESSAGE PRINTING AND THE PRINTING OF
ZERO ELEMENTS OF ARRAYS;
OFF MSG$ ON NERO$
COMMENT HERE WE INTRODUCE THE COVARIANT AND CONTRAVARIANT METRICS;
ARRAY GG(3,3),H(3,3),X(3)$
FOR I:=0:3 DO FOR J:=0:3 DO GG(I,J):=H(I,J):=0$
GG(0,0):=E**(Q1(X(1)))$
GG(1,1):=-E**(P1(X(1)))$
GG(2,2):=-X(1)**2$
GG(3,3):=-X(1)**2*SIN(X(2))**2$
FOR I:=0:3 DO H(I,I):=1/GG(I,I)$
IF I UNEQ J LET DF(P1(X(I)),X(J))=0, DF(Q1(X(I)),X(J))=0;
COMMENT GENERATE CHRISTOFFEL SYMBOLS AND STORE IN ARRAYS
CS1 AND CS2;
ARRAY CS1(3,3,3)$
FOR I:=0:3 DO FOR J:=I:3
DO FOR K:=0:3 DO
CS1(J,I,K) := CS1(I,J,K):=(DF(GG(I,K),X(J))+DF(GG(J,K),X(I))
-DF(GG(I,J),X(K)))/2$
ARRAY CS2(3,3,3)$
FOR I:= 0:3 DO FOR J:=I:3
DO FOR K:=0:3 DO
CS2(J,I,K):= CS2(I,J,K) := FOR P := 0:3
SUM H(K,P)*CS1(I,J,P)$
COMMENT NOW CALCULATE THE DERIVATIVES OF THE CHRISTOFFEL SYMBOLS
AND STORE IN DC2(I,J,K,L);
ARRAY DC2(3,3,3,3)$
FOR I:=0:3 DO FOR J:=I:3 DO FOR K:=0:3 DO FOR L:=0:3 DO
DC2(J,I,K,L) := DC2(I,J,K,L):=DF(CS2(I,J,K),X(L))$
COMMENT NOW STORE THE SUMS OF PRODUCTS OF THE CS2 IN SPCS2;
ARRAY SPCS2(3,3,3,3)$
FOR I:=0:3 DO FOR J:=I:3 DO FOR K:=0:3 DO FOR L:=0:3 DO
SPCS2(J,I,K,L) := SPCS2(I,J,K,L) := FOR P := 0:3
SUM CS2(P,L,K)*CS2(I,J,P)$
COMMENT NOW COMPUTE THE RIEMANN TENSOR AND STORE IN R(I,J,K,L);
ARRAY R(3,3,3,3)$
FOR I:=0:3 DO FOR J:=I+1:3 DO
FOR K:=I:3 DO
FOR L:=K+1:IF K=I THEN J ELSE 3 DO
BEGIN
R(J,I,L,K) := R(I,J,K,L) := FOR Q := 0:3
SUM GG(I,Q)*(DC2(K,J,Q,L)-DC2(J,L,Q,K)
+SPCS2(K,J,Q,L)-SPCS2(L,J,Q,K))$
R(I,J,L,K) := R(J,I,K,L) := -R(I,J,K,L)$
IF I=K AND J =L THEN GO TO A$
R(K,L,I,J) := R(L,K,J,I) := R(I,J,K,L)$
R(L,K,I,J) := R(K,L,J,I) := -R(I,J,K,L)$
A: END$
COMMENT NOW COMPUTE AND PRINT THE RICCI TENSOR;
ARRAY RICCI(3,3)$
FOR I:=0:3 DO FOR J:=0:3 DO
WRITE RICCI(J,I) := RICCI(I,J) := FOR P := 0:3 SUM FOR Q := 0:3 SUM
H(P,Q)*R(Q,I,P,J);
COMMENT FINALLY COMPUTE AND PRINT THE RICCI SCALAR;
R := FOR I:= 0:3 SUM FOR J:= 0:3 SUM H(I,J)*RICCI(I,J);
END OF RICCI TENSOR AND SCALAR CALCULATION;
COMMENT END OF ALL EXAMPLES; END;